Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jun;150(3):1061–1068. doi: 10.1128/jb.150.3.1061-1068.1982

d-(–)-Tartrate Dehydratase of Rhodopseudomonas sphaeroides: Purification, Characterization, and Application to Enzymatic Determination of d-(–)-Tartrate

Hergo Rode 1, Friedrich Giffhorn 1
PMCID: PMC216323  PMID: 6978882

Abstract

An isolate of Rhodopseudomonas sphaeroides was capable of growing phototrophically and chemotrophically (μ = 0.15 h−1 for either condition) with d-(–)-tartrate as the carbon source. A d-(–)-tartrate dehydratase, (d-(–)-tartrate hydrolyase, EC 4.1.2.70) was induced in the presence of d-(–)-tartrate. The enzyme was purified 30-fold from cell extracts of R. sphaeroides to a specific activity of 7.5 U/mg of protein and was subsequently crystallized in the presence of 1 M KCl. The enzyme was homogeneous upon analytical electrophoresis in 5% polyacrylamide gels and by criteria of ultracentrifugation. The native enzyme had a molecular weight of 158,000 ± 1,000 as determined by gel filtration and ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single polypeptide chain with an estimated molecular weight of 39,500 ± 500, indicating that d-(–)-tartrate dehydratase was a tetramer. The isoelectric point of the native enzyme was at pH 5.5. The enzyme catalyzed irreversibly the conversion of d-(–)-tartrate to oxaloacetate and water, and the turnover number was calculated to be 1,185. The reaction followed Michaelis-Menten kinetics, and a Km value of 1.8 × 10−4 M was determined. d-(–)-Tartrate dehydratase required Mg2+ for activity. The pH optimum was within a range from 6.2 to 7.2, and the activation energy of the reaction (Δ H0) was 63.2 kJ/mol. The enzyme was specific for d-(–)-tartrate; it did not react with l-(+)-tartrate, meso-tartrate, and other hydroxycarboxylic acids. d-(–)-Tartrate dehydratase was strongly inhibited by meso-tartrate (50% at 0.6 mM). l-(+)-Tartrate and a variety of hydroxycarboxylic acids caused 50% inhibition at concentrations of >30 mM.

Full text

PDF
1061

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfredsson G. A., Barker R. M., Old D. C., Duguid J. P. Use of tartaric acid isomers and citric acid in the biotyping of Salmonella typhimurium. J Hyg (Lond) 1972 Dec;70(4):651–666. doi: 10.1017/s0022172400022518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreesen J. R., Gottschalk G. The occurrence of a modified Entner-doudoroff pathway in Clostridium aceticum. Arch Mikrobiol. 1969;69(2):160–170. doi: 10.1007/BF00409760. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender R., Gottschalk G. Purification and properties of D-gluconate dehydratase from Clostridium pasteurianum. Eur J Biochem. 1973 Dec 3;40(1):309–321. doi: 10.1111/j.1432-1033.1973.tb03198.x. [DOI] [PubMed] [Google Scholar]
  5. Donald A., Sibley D., Lyons D. E., Dahms A. S. D-Galactonate dehydrase. Purification and properties. J Biol Chem. 1979 Mar 25;254(6):2132–2137. [PubMed] [Google Scholar]
  6. Duguid J. P., Anderson E. S., Alfredsson G. A., Barker R., Old D. C. A new biotyping scheme for Salmonella typhimurium and its phylogenetic significance. J Med Microbiol. 1975 Feb;8(1):149–166. doi: 10.1099/00222615-8-1-149. [DOI] [PubMed] [Google Scholar]
  7. Giffhorn F., Gottschalk G. Crystallization and subunit composition of citrate lyase of Rhodopseudomonas gelatinosa. FEBS Lett. 1978 Dec 1;96(1):175–178. doi: 10.1016/0014-5793(78)81088-6. [DOI] [PubMed] [Google Scholar]
  8. Giffhorn F., Gottschalk G. Effect of growth conditions on the activation and inactivation of citrate lyase of Rhodopseudomonas gelatinosa. J Bacteriol. 1975 Dec;124(3):1046–1051. doi: 10.1128/jb.124.3.1046-1051.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HURLBERT R. E., JAKOBY W. B. REVERSIBLE DISSOCIATION OF L-TARTARIC ACID DEHYDRASE INTO SUBUNITS. Biochim Biophys Acta. 1964 Oct 23;92:202–204. doi: 10.1016/0926-6569(64)90298-6. [DOI] [PubMed] [Google Scholar]
  10. HURLBERT R. E., JAKOBY W. B. TARTARIC ACID METABOLISM. I. SUBUNITS OF L(+)-TARTARIC ACID DEHYDRASE. J Biol Chem. 1965 Jul;240:2772–2777. [PubMed] [Google Scholar]
  11. KRAMPITZ L. O., LYNEN F. MECHANISM OF TARTRATE DISSIMILATION. Biochem Z. 1964 Dec 7;341:97–108. [PubMed] [Google Scholar]
  12. Kersters K., Khan-Matsubara J., Nelen L., De Ley J. Purification and properties of D-gluconate dehydratase from Achromobacter. Antonie Van Leeuwenhoek. 1971;37(2):233–246. doi: 10.1007/BF02218486. [DOI] [PubMed] [Google Scholar]
  13. Kohn L. D., Packman P. M., Allen R. H., Jakoby W. B. Tartaric acid metabolism. V. Crystalline tartrate dehydrogenase. J Biol Chem. 1968 May 25;243(10):2479–2485. [PubMed] [Google Scholar]
  14. LA RIVIERE J. W. Intermediate products in tartrate decomposition by cell-free extracts of Pseudomonas putida under anaerobic conditions. Biochim Biophys Acta. 1956 Jul;21(1):190–191. doi: 10.1016/0006-3002(56)90122-6. [DOI] [PubMed] [Google Scholar]
  15. LA RIVIERE J. W. Specificity of whole cells and cell-free extracts of Pseudomonas putida towards (+), (-), and meso-tartrate. Biochim Biophys Acta. 1956 Oct;22(1):206–207. doi: 10.1016/0006-3002(56)90250-5. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. MERCER W. A., VAUGHN R. H. The characteristics of some thermophilic, tartrate-fermenting anaerobes. J Bacteriol. 1951 Jul;62(1):27–37. doi: 10.1128/jb.62.1.27-37.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakamura S., Ogata H. Specificity of fumarate hydratase. I. Formation of oxalacetate from unnatural (--)-tartrate by fumarate hydratase. J Biol Chem. 1968 Feb 10;243(3):528–532. [PubMed] [Google Scholar]
  19. Radler F., Yannissis C. Weinsäureabbau bei Milchsäurebakterien. Arch Mikrobiol. 1972;82(3):219–239. [PubMed] [Google Scholar]
  20. SHILO M., STANIER R. Y. The utilization of the tartaric acids by pseudomonads. J Gen Microbiol. 1957 Apr;16(2):482–490. doi: 10.1099/00221287-16-2-482. [DOI] [PubMed] [Google Scholar]
  21. SHILO M. The enzymic conversion of the tartaric acids to oxaloacetic acid. J Gen Microbiol. 1957 Apr;16(2):472–481. doi: 10.1099/00221287-16-2-472. [DOI] [PubMed] [Google Scholar]
  22. SMILEY J. D., ASHWELL G. Uronic acid metabolism in bacteria. III. Purification and properties of D-altronic acid and D-mannonic acid dehydrases in Escherichia coli. J Biol Chem. 1960 Jun;235:1571–1575. [PubMed] [Google Scholar]
  23. Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. Decomposition of Tartrates by the Coliform Bacteria. J Bacteriol. 1946 Sep;52(3):311–325. [PMC free article] [PubMed] [Google Scholar]
  24. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  25. van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES