Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jun;150(3):1154–1163. doi: 10.1128/jb.150.3.1154-1163.1982

Characteristics of a Binding Protein-Dependent Transport System for sn-Glycerol-3-Phosphate in Escherichia coli That Is Part of the pho Regulon

Herbert Schweizer 1, Manfred Argast 1, Winfried Boos 1
PMCID: PMC216336  PMID: 7042685

Abstract

The ugp-dependent transport system for sn-glycerol-3-phosphate has been characterized. The system is induced under conditions of phosphate starvation and in mutants that are constitutive for the pho regulon. The system does not operate in membrane vesicles and is highly sensitive toward osmotic shock. The participation of a periplasmic binding protein in the transport process can be deduced from the isolation of transport mutants that lack the binding protein. As with other binding protein-dependent transport systems, this protein appears to be necessary but not sufficient for transport activity. The isolation of mutants has become possible by selection for resistance against the toxic analog 3,4-dihydroxybutyl-1-phosphonate that is transported by the system. sn-Glycerol-3-phosphate transported via ugp cannot be used as the sole carbon source. Strains have been constructed that lack alkaline phosphatase and glycerol kinase. In addition, they are constitutive for the glp regulon and contain high levels of glycerol-3-phosphate dehydrogenase. Despite the fact that these strains exhibit high ugp-dependent transport activity for sn-glycerol-3-phosphate they are unable to grow on it as a sole source of carbon. However, when cells are grown on an alternate carbon source, 14C label from [14C]sn-glycerol-3-phosphate appears in phospholipids as well as in trichloroacetic acid-precipitable material. The incorporation of 14C label is strongly reduced when sn-glycerol-3-phosphate is the only carbon source. In the presence of an alternate carbon source, this inhibition is relieved, and sn-glycerol-3-phosphate transported by ugp can be used as the sole source of phosphate.

Full text

PDF
1154

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aono H., Otsuji N. Genetic mapping of regulator gene phoS for alkaline phosphatase in Escherichia coli. J Bacteriol. 1968 Mar;95(3):1182–1183. doi: 10.1128/jb.95.3.1182-1183.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argast M., Boos W. Purification and properties of the sn-glycerol 3-phosphate-binding protein of Escherichia coli. J Biol Chem. 1979 Nov 10;254(21):10931–10935. [PubMed] [Google Scholar]
  3. Argast M., Ludtke D., Silhavy T. J., Boos W. A second transport system for sn-glycerol-3-phosphate in Escherichia coli. J Bacteriol. 1978 Dec;136(3):1070–1083. doi: 10.1128/jb.136.3.1070-1083.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bochner B. R., Huang H. C., Schieven G. L., Ames B. N. Positive selection for loss of tetracycline resistance. J Bacteriol. 1980 Aug;143(2):926–933. doi: 10.1128/jb.143.2.926-933.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boos W., Hartig-Beecken I., Altendorf K. Purification and properties of a periplasmic protein related to sn-glycerol-3-phosphate transport in Escherichia coli. Eur J Biochem. 1977 Feb;72(3):571–581. doi: 10.1111/j.1432-1033.1977.tb11280.x. [DOI] [PubMed] [Google Scholar]
  6. Chai T. J., Foulds J. Two bacteriophages which utilize a new Escherichia coli major outer membrane protein as part of their receptor. J Bacteriol. 1978 Jul;135(1):164–170. doi: 10.1128/jb.135.1.164-170.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cronan J. E., Jr, Bell R. M. Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of sn-glycerol 3-phosphate acyltransferase Km mutants. J Bacteriol. 1974 Oct;120(1):227–233. doi: 10.1128/jb.120.1.227-233.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cronan J. E., Jr, Bell R. M. Mutants of Escherichia coli defective in membrane phospholipid synthesis: mapping of the structural gene for L-glycerol 3-phosphate dehydrogenase. J Bacteriol. 1974 May;118(2):598–605. doi: 10.1128/jb.118.2.598-605.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foulds J., Chai T. J. New major outer membrane proteins found in an Escherichia coli tolF mutant resistant to bacteriophage TuIb. J Bacteriol. 1978 Mar;133(3):1478–1483. doi: 10.1128/jb.133.3.1478-1483.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freedberg W. B., Lin E. C. Three kinds of controls affecting the expression of the glp regulon in Escherichia coli. J Bacteriol. 1973 Sep;115(3):816–823. doi: 10.1128/jb.115.3.816-823.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  12. Guth A., Engel R., Tropp B. E. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli. J Bacteriol. 1980 Jul;143(1):538–539. doi: 10.1128/jb.143.1.538-539.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henning U., Schmidmayr W., Hindennach I. Major proteins of the outer cell envelope membrane of Escherichia coli K-12: multiple species of protein I. Mol Gen Genet. 1977 Sep 9;154(3):293–298. doi: 10.1007/BF00571285. [DOI] [PubMed] [Google Scholar]
  14. Hirata H., Altendorf K., Harold F. M. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential. J Biol Chem. 1974 May 10;249(9):2939–2945. [PubMed] [Google Scholar]
  15. KOCH J. P., HAYASHI S., LIN E. C. THE CONTROL OF DISSIMILATION OF GLYCEROL AND L-ALPHA-GLYCEROPHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:3106–3108. [PubMed] [Google Scholar]
  16. Kistler W. S., Lin E. C. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J Bacteriol. 1971 Dec;108(3):1224–1234. doi: 10.1128/jb.108.3.1224-1234.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Larson T. J., Hirabayshi T., Dowhan W. Phosphatidylglycerol biosynthesis in Bacillus licheniformis Resolution of membrane-bound enzymes by affinity chromatography on cytidinediphospho-sn-1,2-diacylglycerol Sepharose. Biochemistry. 1976 Mar 9;15(5):974–979. doi: 10.1021/bi00650a005. [DOI] [PubMed] [Google Scholar]
  19. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  20. Overbeeke N., Lugtenberg B. Expression of outer membrane protein e of Escherichia coli K12 by phosphate limitation. FEBS Lett. 1980 Apr 7;112(2):229–232. doi: 10.1016/0014-5793(80)80186-4. [DOI] [PubMed] [Google Scholar]
  21. Pugsley A. P., Lee D. R., Schnaitman C. A. Genes affecting the major outer membrane proteins of Escherichia coli K-12: mutations at nmpA and nmpB. Mol Gen Genet. 1980;177(4):681–689. doi: 10.1007/BF00272680. [DOI] [PubMed] [Google Scholar]
  22. ROGERS D., REITHEL F. J. Acid phosphatases of Escherichia coli. Arch Biochem Biophys. 1960 Jul;89:97–104. doi: 10.1016/0003-9861(60)90018-7. [DOI] [PubMed] [Google Scholar]
  23. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosenberg H., Gerdes R. G., Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol. 1977 Aug;131(2):505–511. doi: 10.1128/jb.131.2.505-511.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schweizer H., Grussenmeyer T., Boos W. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol-3-phosphate transport system of Escherichia coli. J Bacteriol. 1982 Jun;150(3):1164–1171. doi: 10.1128/jb.150.3.1164-1171.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Silhavy T. J., Hartig-Beecken I., Boos W. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli. J Bacteriol. 1976 May;126(2):951–958. doi: 10.1128/jb.126.2.951-958.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tommassen J., Lugtenberg B. Localization of phoE, the structural gene for outer membrane protein e in Escherichia coli K-12. J Bacteriol. 1981 Jul;147(1):118–123. doi: 10.1128/jb.147.1.118-123.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Alphen W., van Seim N., Lugtenberg B. Pores in the outer membrane of Escherichia coli K12: involvement of proteins b and e in the functioning of pores for nucleotides. Mol Gen Genet. 1978 Feb 7;159(1):75–83. doi: 10.1007/BF00401750. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES