Abstract
A strain of Arthrobacter was isolated by enrichment culture with cyclohexaneacetate as the sole source of carbon and grew with a doubling time of 4.2 h. In addition to growing with cyclohexaneacetate, the organism also grew with cyclohexanebutyrate at concentrations not above 0.05%, and with a variety of alicyclic ketones and alcohols. Oxidation of cyclohexaneacetate proceeded through formation of the coenzyme A (CoA) ester followed by initiation of a beta-oxidation cycle. beta-Oxidation was blocked before the second dehydrogenation step due to the formation of a tertiary alcohol, and the side chain was eliminated as acetyl-CoA by the action of (1-hydroxycyclohexan-1-yl)acetyl-CoA lyase. The cyclohexanone thus formed was degraded by a well-described route that involves ring-oxygen insertion by a biological Baeyer-Villiger oxygenase. All enzymes of the proposed metabolic sequence were demonstrated in cell-free extracts. Arthrobacter sp. strain CA1 synthesized constitutive beta-oxidative enzymes, but further induction of enzymes active toward cyclohexaneacetate and its metabolites could occur during growth with the alicyclic acid. Other enzymes of the sequence, (1-hydroxycyclohexan-1-yl)acetyl-CoA lyase and enzymes of cyclohexanone oxidation, were present at negligible levels in succinate-grown cells but induced by growth with cyclohexaneacetate. The oxidation of cyclohexanebutyrate was integrated into the pathway for cyclohexaneacetate oxidation by a single beta-oxidation cycle. Oxidation of the compound could be divided into two phases. Initial oxidation to (1-hydroxycyclohexan-1-yl)acetate could be catalyzed by constitutive enzymes, whereas the further degradation of (1-hydroxycyclohexan-1-yl)acetate was dependent on induced enzyme synthesis which could be inhibited by chloramphenicol with the consequent accumulation of cyclohexaneacetate and (1-hydroxycyclohexan-1-yl)acetate.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beam H. W., Perry J. J. Microbial degradation and assimilation of n-alkyl-substituted cycloparaffins. J Bacteriol. 1974 May;118(2):394–399. doi: 10.1128/jb.118.2.394-399.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blakley E. R. The microbial degradation of cyclohexanecarboxylic acid by a beta-oxidation pathway with simultaneous induction to the utilization of benzoate. Can J Microbiol. 1978 Jul;24(7):847–855. doi: 10.1139/m78-141. [DOI] [PubMed] [Google Scholar]
- CLAUS D., WALKER N. THE DECOMPOSITION OF TOLUENE BY SOIL BACTERIA. J Gen Microbiol. 1964 Jul;36:107–122. doi: 10.1099/00221287-36-1-107. [DOI] [PubMed] [Google Scholar]
- Cooper R. A., Kornberg H. L. The utilization of itaconate by Pseudomonas sp. Biochem J. 1964 Apr;91(1):82–91. doi: 10.1042/bj0910082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAGLEY S., EVANS W. C., RIBBONS D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature. 1960 Nov 12;188:560–566. doi: 10.1038/188560a0. [DOI] [PubMed] [Google Scholar]
- Donoghue N. A., Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL1 and Acinetobacter NCIB 9871. Eur J Biochem. 1976 Mar 16;63(1):175–192. doi: 10.1111/j.1432-1033.1976.tb10220.x. [DOI] [PubMed] [Google Scholar]
- Donoghue N. A., Trudgill P. W. The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur J Biochem. 1975 Dec 1;60(1):1–7. doi: 10.1111/j.1432-1033.1975.tb20968.x. [DOI] [PubMed] [Google Scholar]
- Hacking A. J., Quayle J. R. Purification and properties of malyl-coenzyme A lyase from Pseudomonas AM1. Biochem J. 1974 May;139(2):399–405. doi: 10.1042/bj1390399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hareland W. A., Crawford R. L., Chapman P. J., Dagley S. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol. 1975 Jan;121(1):272–285. doi: 10.1128/jb.121.1.272-285.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hersh L. B. Malate adenosine triphosphate lyase. Separation of the reaction into a malate thiokinase and malyl coenzyme A lyase. J Biol Chem. 1973 Nov 10;248(21):7295–7303. [PubMed] [Google Scholar]
- Kaneda T. Enzymatic aromatization of 4-ketocyclohexanecarboxylic acid to p-hydroxybenzoic acid. Biochem Biophys Res Commun. 1974 May 7;58(1):140–144. doi: 10.1016/0006-291x(74)90902-4. [DOI] [PubMed] [Google Scholar]
- Lapidot Y., Rappoport S., Wolman Y. Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J Lipid Res. 1967 Mar;8(2):142–145. [PubMed] [Google Scholar]
- Norris D. B., Trudgill P. W. The metabolism of cyclohexanol by Nocardia globerula CL1. Biochem J. 1971 Feb;121(3):363–370. doi: 10.1042/bj1210363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien W. J., Frerman F. E. Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization. J Bacteriol. 1977 Nov;132(2):532–540. doi: 10.1128/jb.132.2.532-540.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
- Ougham H. J., Trudgill P. W. The microbial metabolism of cyclohexylacetic acid [proceedings]. Biochem Soc Trans. 1978;6(6):1324–1326. doi: 10.1042/bst0061324. [DOI] [PubMed] [Google Scholar]
- Overath P., Pauli G., Schairer H. U. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 1969 Feb;7(4):559–574. [PubMed] [Google Scholar]
- ROSENBERGER R. F., ELSDEN S. R. The yields of Streptococcus faecalis grown in continuous culture. J Gen Microbiol. 1960 Jun;22:726–739. doi: 10.1099/00221287-22-3-726. [DOI] [PubMed] [Google Scholar]
- Rho E. M., Evans W. C. The aerobic metabolism of cyclohexanecarboxylic acid by Acinetobacter anitratum. Biochem J. 1975 Apr;148(1):11–15. doi: 10.1042/bj1480011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparnins V. L., Chapman P. J., Dagley S. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. J Bacteriol. 1974 Oct;120(1):159–167. doi: 10.1128/jb.120.1.159-167.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stegink L. D., Coon M. J. Stereospecificity and other properties of highly purified beta-hydroxy-beta-methylglutaryl coenzyme A cleavage enzyme from bovine liver. J Biol Chem. 1968 Oct 25;243(20):5272–5279. [PubMed] [Google Scholar]
- Taylor D. G., Trudgill P. W. Metabolism of cyclohexane carboxylic acid by Alcaligenes strain W1. J Bacteriol. 1978 May;134(2):401–411. doi: 10.1128/jb.134.2.401-411.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
