Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jun;150(3):1322–1328. doi: 10.1128/jb.150.3.1322-1328.1982

Efficiency of light-driven metabolite transport in the photosynthetic bacterium Rhodospirillum rubrum.

M Zebrower, P A Loach
PMCID: PMC216357  PMID: 6804443

Abstract

An evaluation of the efficiency of the L-alanine and L-malate transport systems was undertaken with the photosynthetic bacterium Rhodospirillum rubrum grown on the amino acid whose uptake was measured. An all-glass apparatus was constructed for measuring transport activity under anaerobic conditions. L-Alanine transport activity decreased under conditions of Mg2+ depletion. When cells were allowed to become inactive by suspending them in the dark in Mg2+-free buffer, full activity could be restored with a few minutes by adding 20 mM Mg2+ and illuminating the cells. The transport activity was completely inhibited by carbonyl cyanide m-trifluoromethoxyphenylhydrazone and by ammonia. The quantum yield for the uptake of either L-alanine or L-malate was 0.015 molecules per photon. The results are discussed in relation to the expected efficiencies for metabolite transport and regulation by Mg2+.

Full text

PDF
1322

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belliveau J. W., Lanyi J. K. Calcium transport in Halobacterium halobium envelope vesicles. Arch Biochem Biophys. 1978 Feb;186(1):98–105. doi: 10.1016/0003-9861(78)90468-x. [DOI] [PubMed] [Google Scholar]
  2. Bulychev A. A., Andrianov V. K., Kurella G. A. Effect of dicyclohexylcarbodiimide on the proton conductance of thylakoid membranes in intact chloroplast. Biochim Biophys Acta. 1980 May 9;590(3):300–308. doi: 10.1016/0005-2728(80)90201-7. [DOI] [PubMed] [Google Scholar]
  3. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  4. Hellingwerf K. J., Michels P. A., Dorpema J. W., Konings W. N. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Eur J Biochem. 1975 Jul 1;55(2):397–406. doi: 10.1111/j.1432-1033.1975.tb02175.x. [DOI] [PubMed] [Google Scholar]
  5. Hubbard J. S., Rinehart C. A., Baker R. A. Energy coupling in the active transport of amino acids by bacteriohodopsin-containing cells of Halobacterium holobium. J Bacteriol. 1976 Jan;125(1):181–190. doi: 10.1128/jb.125.1.181-190.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klein W. L., Boyer P. D. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [PubMed] [Google Scholar]
  7. Knaff D. B. Active transport in the photosynthetic bacterium Chromatium vinosum. Arch Biochem Biophys. 1978 Aug;189(2):225–230. doi: 10.1016/0003-9861(78)90207-2. [DOI] [PubMed] [Google Scholar]
  8. Knaff D. B., Whetstone R., Carr J. W. The role of soluble cytochrome c-551 in cyclic electron flow-driven active transport in Chromatium vinosum. Biochim Biophys Acta. 1980 Mar 7;590(1):50–58. doi: 10.1016/0005-2728(80)90145-0. [DOI] [PubMed] [Google Scholar]
  9. Konings W. N., Freese E. Amino acid transport in membrane vesicles of Bacillus subtilis. J Biol Chem. 1972 Apr 25;247(8):2408–2418. [PubMed] [Google Scholar]
  10. Lueking D. R., Fraley R. T., Kaplan S. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Fate of "old" and "new" membrane. J Biol Chem. 1978 Jan 25;253(2):451–457. [PubMed] [Google Scholar]
  11. Petty K., Jackson J. B., Dutton P. L. Factors controlling the binding of two protons per electron transferred through the ubiquinone and cytochrome b/c2 segment of Rhodopseudomonas sphaeroides chromatophores. Biochim Biophys Acta. 1979 Apr 11;546(1):17–42. doi: 10.1016/0005-2728(79)90167-1. [DOI] [PubMed] [Google Scholar]
  12. Rinehart C. A., Hubbard J. S. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila. J Bacteriol. 1976 Sep;127(3):1255–1264. doi: 10.1128/jb.127.3.1255-1264.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Short S. A., White D. C., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles. J Biol Chem. 1972 Dec 10;247(23):7452–7458. [PubMed] [Google Scholar]
  14. Slooten L., Branders C. The influence of energy-transfer inhibitors on proton permeability and photophosphorylation in normal and preilluminated Rhodospirillum rubrum chromatophores. Biochim Biophys Acta. 1979 Jul 10;547(1):79–90. doi: 10.1016/0005-2728(79)90097-5. [DOI] [PubMed] [Google Scholar]
  15. Sone N., Yoshida M., Hirata H., Kagawa Y. Carbodiimide-binding protein of H+-translocating ATPase and inhibition of H+ conduction by dicyclohexylcarbodiimide. J Biochem. 1979 Feb;85(2):503–509. doi: 10.1093/oxfordjournals.jbchem.a132357. [DOI] [PubMed] [Google Scholar]
  16. Yamamoto Y., Ke B. Regulation of excitation energy distribution in photosystem-II fragments by magnesium ions. Biochim Biophys Acta. 1980 Sep 5;592(2):296–302. doi: 10.1016/0005-2728(80)90190-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES