Abstract
Whole cells and isolated membranes of the marine bacterium MB22 converted nucleotides present in the external medium rapidly into nucleosides and then into bases. Nucleosides and purine bases formed were taken up by distinct transport systems. We found a high-affinity common transport system for adenine, guanine, and hypoxanthine, with a Km of 40 nM. This system was inhibited noncompetitively by purine nucleosides. In addition, two transport systems for nucleosides were present: one for guanosine with a Km of 0.8 microM and another one for inosine and adenosine with a Km of 1.4 microM. The nucleoside transport systems exhibited both mixed and noncompetitive inhibition by different nucleosides other than those translocated; purine and pyrimidine bases had no effect. The transport of nucleosides and purine bases was inhibited by dinitrophenol or azide, thus suggesting that transport is energy dependent. Inside the cell all of the substrates were converted mainly into guanosine, xanthine, and uric acid, but also anabolic products, such as nucleotides and nucleic acids, could be found.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlers J., Günther T., Peter H. W. Phospholipid composition of plasma membranes and kinetic properties of membrane-bound nucleotidase from marine bacteria. Int J Biochem. 1978;9(8):573–578. doi: 10.1016/0020-711x(78)90117-9. [DOI] [PubMed] [Google Scholar]
- Bagnara A. S., Finch L. R. The effects of bases and nucleosides on the intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli. Eur J Biochem. 1974 Feb 1;41(3):421–430. doi: 10.1111/j.1432-1033.1974.tb03283.x. [DOI] [PubMed] [Google Scholar]
- Burton K. Transport of adenine, hypoxanthine and uracil into Escherichia coli. Biochem J. 1977 Nov 15;168(2):195–204. doi: 10.1042/bj1680195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doskocil J. The components of the nucleoside-transporting system in Escherichia coli. Biochim Biophys Acta. 1972 Sep 1;282(1):393–400. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase from Escherichia coli K12 and control of activity by nucleotides. J Biol Chem. 1971 Sep 10;246(17):5294–5303. [PubMed] [Google Scholar]
- Komatsu Y., Tanaka K. A showdomycin-resistant mutant of Escherichia coli K-12 with altered nucleoside transport character. Biochim Biophys Acta. 1972 Nov 2;288(2):390–403. doi: 10.1016/0005-2736(72)90260-x. [DOI] [PubMed] [Google Scholar]
- Munch-Petersen A., Pihl N. J. Stimulatory effect of low ATP pools on transport of purine nucleosides in cells of Escherichia coli. Proc Natl Acad Sci U S A. 1980 May;77(5):2519–2523. doi: 10.1073/pnas.77.5.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mygind B., Munch-Petersen Transport of pyrimidine nucleosides in cells of Escherichia coli K 12. Eur J Biochem. 1975 Nov 15;59(2):365–372. doi: 10.1111/j.1432-1033.1975.tb02463.x. [DOI] [PubMed] [Google Scholar]
- Nazar R. N., Lawford H. G., Wong J. T. An improved procedure for extraction and analysis of cellular nucleotides. Anal Biochem. 1970 Jun;35(2):305–313. doi: 10.1016/0003-2697(70)90189-2. [DOI] [PubMed] [Google Scholar]
- Peterson R. N., Boniface J., Koch A. L. Energy requirements, interactions and distinctions in the mechanisms for transport of various nucleosides in Escherichia coli. Biochim Biophys Acta. 1967 Sep 9;135(4):771–783. doi: 10.1016/0005-2736(67)90108-3. [DOI] [PubMed] [Google Scholar]
- Peterson R. N., Koch A. L. The relationship of adenosine and inosine transport in Escherichia coli. Biochim Biophys Acta. 1966 Sep 5;126(1):129–145. doi: 10.1016/0926-6585(66)90043-4. [DOI] [PubMed] [Google Scholar]
- Pickard M. A. Passive diffusion of nucleosides into Micrococcus sodonensis membrane vesicles. Can J Biochem. 1980 Jun;58(6):457–460. doi: 10.1139/o80-060. [DOI] [PubMed] [Google Scholar]
- Pickard M. A., Phillippe L., Campbell J. N. Metabolism and transport of purine nucleosides by membrane preparations of Micrococcus sodonensis. Can J Biochem. 1974 Feb;52(2):83–89. doi: 10.1139/o74-013. [DOI] [PubMed] [Google Scholar]
- Roy-Burman S., Visser D. W. Transport of purines and deoxyadenosine in Escherichia coli. J Biol Chem. 1975 Dec 25;250(24):9270–9275. [PubMed] [Google Scholar]
- Seipel S., Reichert U. Two dimensional thin-layer chromatography-autoradiography of intracellular purine interconversion products. J Chromatogr. 1977 May 21;135(2):485–488. doi: 10.1016/s0021-9673(00)88394-6. [DOI] [PubMed] [Google Scholar]
- Simonis M., Rade S., Ahlers J. Studies on a membrane-bound nucleotidase from the marine bacterium MB 22. Comparison of a photometric and luminometric method for kinetic investigations. Int J Biochem. 1981;13(6):733–738. doi: 10.1016/0020-711x(81)90043-4. [DOI] [PubMed] [Google Scholar]
- Yagil E., Beacham I. R. Uptake of adenosine 5'-monophosphate by Escherichia coli. J Bacteriol. 1975 Feb;121(2):401–405. doi: 10.1128/jb.121.2.401-405.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
