Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):572–581. doi: 10.1128/jb.150.2.572-581.1982

Transcription in bacteria at different DNA concentrations.

G Churchward, H Bremer, R Young
PMCID: PMC216403  PMID: 6175615

Abstract

The effect of changing the DNA concentration on RNA synthesis, protein synthesis, and cell growth rate was studied in Escherichia coli B/r. The DNA concentration was varied by changing the replication velocity or by changing replication initiation in a thymine-requiring strain with a mutation in replication control. The results demonstrate that changes in DNA concentration (per mass) have no effect on the cell growth rate and the rates of synthesis (per mass) of stable RNA (rRNA, tRNA), bulk mRNA, or protein or on the concentration of RNA polymerase (total RNA polymerase per mass). Thus, transcription in E. coli is not limited by the concentration of DNA, but rather by the concentration of functional RNA polymerase in the cytoplasm. Changing the DNA concentration does, however, affect fully induced lac gene activity, here used as a model for constitutive gene expression. The magnitude of the effect of DNA concentration on lac gene activity depends on the distribution of replication forks over the chromosome, which is a function of the replication velocity. Analysis of these date reinforces the conclusion that transcription is limited by the concentration of functional RNA polymerase in the cytoplasm.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bremer H., Churchward G. An examination of the Cooper-Helmstetter theory of DNA replication in bacteria and its underlying assumptions. J Theor Biol. 1977 Dec 21;69(4):645–654. doi: 10.1016/0022-5193(77)90373-3. [DOI] [PubMed] [Google Scholar]
  3. Bremer H., Dalbow D. G. Regulatory state of ribosomal genes and physiological changes in the concentration of free ribonucleic acid polymerase in Escherichia coli. Biochem J. 1975 Jul;150(1):9–12. doi: 10.1042/bj1500009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bremer H., Young R., Churchward G. Initiation and termination of deoxyribonucleic acid replication in bacteria after a stepwise increase in the velocity of replication. J Bacteriol. 1977 Apr;130(1):92–99. doi: 10.1128/jb.130.1.92-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bremer H., Yuan D. RNA chain growth-rate in Escherichia coli. J Mol Biol. 1968 Dec 14;38(2):163–180. doi: 10.1016/0022-2836(68)90404-x. [DOI] [PubMed] [Google Scholar]
  6. Brunschede H., Bremer H. Synthesis of phage- and host-specific RNA in Escherichia coli infected with a fragment of bacteriophage T5. Virology. 1976 Dec;75(2):355–367. doi: 10.1016/0042-6822(76)90034-9. [DOI] [PubMed] [Google Scholar]
  7. Brunschede H., Dove T. L., Bremer H. Establishment of exponential growth after a nutritional shift-up in Escherichia coli B/r: accumulation of deoxyribonucleic acid, ribonucleic acid, and protein. J Bacteriol. 1977 Feb;129(2):1020–1033. doi: 10.1128/jb.129.2.1020-1033.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Choung K. K., Estiva E., Bremer H. Genetic and physiological characterization of a spontaneous mutant of Escherichia coli B/r with aberrant control of deoxyribonucleic acid replication. J Bacteriol. 1981 Mar;145(3):1239–1248. doi: 10.1128/jb.145.3.1239-1248.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Churchward G., Bremer H. Determination of deoxyribonucleic acid replication time in exponentially growing Escherichia coli B/r. J Bacteriol. 1977 Jun;130(3):1206–1213. doi: 10.1128/jb.130.3.1206-1213.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Churchward G., Estiva E., Bremer H. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J Bacteriol. 1981 Mar;145(3):1232–1238. doi: 10.1128/jb.145.3.1232-1238.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  12. Dalbow D. G., Bremer H. Metabolic regulation of beta-galactosidase synthesis in Escherichia coli. A test for constitutive ribosome synthesis. Biochem J. 1975 Jul;150(1):1–8. doi: 10.1042/bj1500001b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dennis P. P., Nordan D. H. Characterization of the hybridization between purified 16S and 23S ribosomal ribonucleic acid and ribosomal deoxyribonucleic acid from Escherichia coli. J Bacteriol. 1976 Oct;128(1):28–34. doi: 10.1128/jb.128.1.28-34.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dennis P. P. Regulation of ribosomal and transfer ribonucleic acid synthesis in Escherichia coli B-r. J Biol Chem. 1972 May 10;247(9):2842–2845. [PubMed] [Google Scholar]
  15. Ellwood M., Nomura M. Chromosomal locations of the genes for rRNA in Escherichia coli K-12. J Bacteriol. 1982 Feb;149(2):458–468. doi: 10.1128/jb.149.2.458-468.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansen F. G., Rasmussen K. V. Regulation of the dnaA product in Escherichia coli. Mol Gen Genet. 1977 Oct 20;155(2):219–225. doi: 10.1007/BF00393163. [DOI] [PubMed] [Google Scholar]
  17. Helmstetter C. E. DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):507–518. doi: 10.1016/0022-2836(68)90424-5. [DOI] [PubMed] [Google Scholar]
  18. Helmstetter C. E., Pierucci O. DNA synthesis during the division cycle of three substrains of Escherichia coli B/r. J Mol Biol. 1976 Apr 15;102(3):477–486. doi: 10.1016/0022-2836(76)90329-6. [DOI] [PubMed] [Google Scholar]
  19. Iwakura Y., Ito K., Ishihama A. Biosynthesis of RNA polymerase in Escherichia coli. I. Control of RNA polymerase content at various growth rates. Mol Gen Genet. 1974;133(1):1–23. doi: 10.1007/BF00268673. [DOI] [PubMed] [Google Scholar]
  20. Kawakami K., Saitoh T., Ishihama A. Biosynthesis of RNA polymerase in Escherichia coli. IX. Growth-dependent variations in the synthesis rate, content and distribution of RNA polymerase. Mol Gen Genet. 1979 Jul 13;174(2):107–116. doi: 10.1007/BF00268348. [DOI] [PubMed] [Google Scholar]
  21. Kennel D. Titration of the gene sites on DNA by DNA-RNA hybridization. II. The Escherichia coli chromosome. J Mol Biol. 1968 May 28;34(1):85–103. doi: 10.1016/0022-2836(68)90236-2. [DOI] [PubMed] [Google Scholar]
  22. Koch A. L. Overall controls on the biosynthesis of ribosomes in growing bacteria. J Theor Biol. 1970 Aug;28(2):201–231. doi: 10.1016/0022-5193(70)90053-6. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Nierlich D. P. Regulation of ribonucleic acid synthesis in growing bacterial cells. I. Control over the total rate of RNA synthesis. J Mol Biol. 1972 Dec 30;72(3):751–764. doi: 10.1016/0022-2836(72)90189-1. [DOI] [PubMed] [Google Scholar]
  25. Norris T. E., Koch A. L. Effect of growth rate on the relative rates of synthesis of messenger, ribosomal and transfer RNA in Escherichia coli. J Mol Biol. 1972 Mar 14;64(3):633–649. doi: 10.1016/0022-2836(72)90088-5. [DOI] [PubMed] [Google Scholar]
  26. Pritchard R. H., Zaritsky A. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature. 1970 Apr 11;226(5241):126–131. doi: 10.1038/226126a0. [DOI] [PubMed] [Google Scholar]
  27. Rose J. K., Yanofsky C. Metabolic regulation of the tryptophan operon of Escherichia coli: repressor-independent regulation of transcription initiation frequency. J Mol Biol. 1972 Aug 14;69(1):103–118. doi: 10.1016/0022-2836(72)90026-5. [DOI] [PubMed] [Google Scholar]
  28. Ryals J., Bremer H. relA-dependent RNA polymerase activity in Escherichia coli. J Bacteriol. 1982 Apr;150(1):168–179. doi: 10.1128/jb.150.1.168-179.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seeburg P. H., Nüsslein C., Schaller H. Interaction of RNA polymerase with promoters from bacteriophage fd. Eur J Biochem. 1977 Mar 15;74(1):107–113. doi: 10.1111/j.1432-1033.1977.tb11372.x. [DOI] [PubMed] [Google Scholar]
  30. Shepherd N. S., Churchward G., Bremer H. Synthesis and activity of ribonucleic acid polymerase in Escherichia coli. J Bacteriol. 1980 Mar;141(3):1098–1108. doi: 10.1128/jb.141.3.1098-1108.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Travers A., Buckland R. Heterogeneity of E. coli RNA polymerase. Nat New Biol. 1973 Jun 27;243(130):257–260. doi: 10.1038/newbio243257a0. [DOI] [PubMed] [Google Scholar]
  32. Yuan D., Shen V. Stability of ribosomal and transfer ribonucleic acid in Escherichia coli B/r after treatment with ethylenedinitrilotetraacetic acid and rifampicin. J Bacteriol. 1975 May;122(2):425–432. doi: 10.1128/jb.122.2.425-432.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES