Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):592–597. doi: 10.1128/jb.150.2.592-597.1982

Protoplast fusion permits high-frequency transfer of a Streptomyces determinant which mediates actinomycin synthesis.

K Ochi
PMCID: PMC216405  PMID: 6175616

Abstract

Prototrophic recombinants and heterocaryotic colonies developed at high frequency when protoplasts of nutritionally complementary actinomycin-producing and nonproducing strains of Streptomyces antibioticus were fused in the presence of polyethylene glycol and plated on minimal regeneration medium. Of the spores obtained from aerial hyphae of a single heterocaryotic colony, 99% carried the act+ character regardless of whether the nutritional markers of the spore were derived from the act+ or the act parent. Similarly, a high-frequency transfer (68% in S. antibioticus, 48% in Streptomyces parvulus) of act+ determinant(s) to act was achieved by protoplast fusion. Protoplasts of a doubly auxotrophic act strain of S. parvulus were efficiently transformed in the presence of polyethylene glycol with respect to the auxotrophic markers by DNA of an act+ auxotrophic strain with complementary nutritional requirements. The transformation frequency of the nutritional (chromosomal) markers was 17%. In contrast, the transformation frequency for actinomycin synthesis was less than 1%.

Full text

PDF
592

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akagawa H., Okanishi M., Umezawa H. A plasmid involved in chloramphenicol production in Streptomyces venezuelae: evidence from genetic mapping. J Gen Microbiol. 1975 Oct;90(2):336–346. doi: 10.1099/00221287-90-2-336. [DOI] [PubMed] [Google Scholar]
  2. Baltz R. H. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol. 1978 Jul;107(1):93–102. doi: 10.1099/00221287-107-1-93. [DOI] [PubMed] [Google Scholar]
  3. Fodor K., Demiri E., Alföldi L. Polyethylene glycol-induced fusion of heat-inactivated and living protoplasts of Bacillus megaterium. J Bacteriol. 1978 Jul;135(1):68–70. doi: 10.1128/jb.135.1.68-70.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GREGORY K. F., HUANG J. C. TYROSINASE INHERITANCE IN STREPTOMYCES SCABIES. I. GENETIC RECOMBINATION. J Bacteriol. 1964 Jun;87:1281–1286. doi: 10.1128/jb.87.6.1281-1286.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Godfrey O., Ford L., Huber M. L. Interspecies matings of Streptomyces fradiae with Streptomyces bikiniensis mediated by conventional and protoplast fusion techniques. Can J Microbiol. 1978 Aug;24(8):994–997. doi: 10.1139/m78-163. [DOI] [PubMed] [Google Scholar]
  6. Hitchcock M. J., Katz E. Actinomycin biosynthesis by protoplasts derived from Streptomyces parvulus. Antimicrob Agents Chemother. 1978 Jan;13(1):104–114. doi: 10.1128/aac.13.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hook D. J., Vining L. C. Biosynthetic precursors of etamycin, a peptidolactone antibiotic from Streptomyces griseoviridus. Can J Biochem. 1973 Dec;51(12):1630–1637. doi: 10.1139/o73-219. [DOI] [PubMed] [Google Scholar]
  8. Hopwood D. A., Wright H. M., Bibb M. J., Cohen S. N. Genetic recombination through protoplast fusion in Streptomyces. Nature. 1977 Jul 14;268(5616):171–174. doi: 10.1038/268171a0. [DOI] [PubMed] [Google Scholar]
  9. Hotta K., Okami Y., Umezawa H. Elimination of the ability of a kanamycin-producing strain to biosynthesize deoxystreptamine moiety by acriflavine. J Antibiot (Tokyo) 1977 Dec;30(12):1146–1149. doi: 10.7164/antibiotics.30.1146. [DOI] [PubMed] [Google Scholar]
  10. KATZ E., PIENTA P., SIVAK A. The role of nutrition in the synthesis of actinomycin. Appl Microbiol. 1958 Jul;6(4):236–241. doi: 10.1128/am.6.4.236-241.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kirby R., Wright L. F., Hopwood D. A. Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature. 1975 Mar 20;254(5497):265–267. doi: 10.1038/254265a0. [DOI] [PubMed] [Google Scholar]
  12. Kähler R., Noack D. Action of acridine orange and ethidium bromide on growth and antibiotic activity of Streptomyces hygroscopicus JA 6599. Z Allg Mikrobiol. 1974;14(6):529–533. doi: 10.1002/jobm.3630140610. [DOI] [PubMed] [Google Scholar]
  13. Ochi K., Hitchcock M. J., Katz E. High-frequency fusion of Streptomyces parvulus or Streptomyces antibioticus protoplasts induced by polyethylene glycol. J Bacteriol. 1979 Sep;139(3):984–992. doi: 10.1128/jb.139.3.984-992.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ochi K., Katz E. Genetic analysis of the actinomycin-producing determinants (plasmid) in Streptomyces parvulus using the protoplast fusion technique. Can J Microbiol. 1980 Dec;26(12):1460–1464. doi: 10.1139/m80-242. [DOI] [PubMed] [Google Scholar]
  15. Ochi K., Katz E. The possible involvement of a plasmid(s) in actinomycin synthesis by Streptomyces parvulus and Streptomyces antibioticus. J Antibiot (Tokyo) 1978 Nov;31(11):1143–1148. doi: 10.7164/antibiotics.31.1143. [DOI] [PubMed] [Google Scholar]
  16. Sankaran L., Pogell B. M. Biosynthesis of puromycin in Streptomyces alboniger: regulation and properties of O-demethylpuromycin O-methyltransferase. Antimicrob Agents Chemother. 1975 Dec;8(6):721–732. doi: 10.1128/aac.8.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shaw P. D., Piwowarski J. Effects of ethidium bromide and acriflavine on streptomycin production by Streptomyces bikiniensis. J Antibiot (Tokyo) 1977 May;30(5):404–408. doi: 10.7164/antibiotics.30.404. [DOI] [PubMed] [Google Scholar]
  18. Umezawa H., Okami Y., Hotta K. Transfer of the leupeptin-producing ability of the strain, Streptomyces roseus MA839-A1, by conjugation. J Antibiot (Tokyo) 1978 Jan;31(1):99–102. doi: 10.7164/antibiotics.31.99. [DOI] [PubMed] [Google Scholar]
  19. Williams W. K., Katz E. Development of a chemically defined medium for the synthesis of actinomycin D by Streptomyces parvulus. Antimicrob Agents Chemother. 1977 Feb;11(2):281–290. doi: 10.1128/aac.11.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wright L. F., Hopwood D. A. Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol. 1976 Jul;95(1):96–106. doi: 10.1099/00221287-95-1-96. [DOI] [PubMed] [Google Scholar]
  21. Yagisawa M., Huang T. S., Davies J. E. Possible involvement of plasmids in biosynthesis of neomycin. J Antibiot (Tokyo) 1978 Aug;31(8):809–813. doi: 10.7164/antibiotics.31.809. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES