Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):616–622. doi: 10.1128/jb.150.2.616-622.1982

Physiological and enzymatic properties of a thymidine-requiring Pediococcus cerevisiae mutant.

M Ariel, H Lavi, E Holtzer, N Grossowicz
PMCID: PMC216408  PMID: 6978334

Abstract

We describe the isolation and characterization of a Pediococcus cerevisiae thymidine-requiring mutant and its thymidine-independent revertant. The mutant strain lacked thymidylate synthetase activity and had an absolute requirement for low concentrations (2 micrograms/ml) of thymidine in addition to a requirement for N-5-formyl tetrahydrofolic acid (folinate). Even at high concentrations (up to 500 micrograms/ml), thymine could not replace thymidine. In contrast to its wild-type parent, which grows only on folinate, the thymidine-requiring mutant (Thy- Fol+) was able to take up and grow on picogram quantities of unreduced folic acid. When both strains were grown on folinate, the Thy- Fol+ strain was at least 10(3)-fold more resistant to the folic acid analogs aminopterin and methotrexate than the wild-type strain. On the other hand, when grown on folic acid, the Thy- Fol+ strain was as sensitive to the folic acid analogs as the Thy+ Fol+ strain and was 10(2)-fold more sensitive than the wild-type strain grown on folinate. The thymidine-independent revertant (Thy+ Fol+) regained the wild-type level of thymidylate synthetase activity, but maintained the ability to take up and grow on unreduced folic acid like its Thy- Fol+ parent.

Full text

PDF
616

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertino J. B., Stacey K. A. A suggested mechanism for the selective procedure for isolating thymine-requiring mutants of Escherichia coli. Biochem J. 1966 Nov;101(2):32C–33C. doi: 10.1042/bj1010032c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breitman T. R., Bradford R. M. Metabolism of thymineless mutants of Escherichia coli. I. Absence of thymidylate synthetase activity and growth characteristics of two sequential thymineless mutants. J Bacteriol. 1967 Mar;93(3):845–852. doi: 10.1128/jb.93.3.845-852.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FELTON E. A., NIVEN C. F., Jr The identity of Leuconostoc citrovorum, strain 8081. J Bacteriol. 1953 Apr;65(4):482–483. doi: 10.1128/jb.65.4.482-483.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Farmer J. L. Conditional antifolate resistance in Bacillus subtilis thyA. Antimicrob Agents Chemother. 1979 Apr;15(4):527–534. doi: 10.1128/aac.15.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GROSSOWICZ N., MANDELBAUM-SHAVIT F., DAVIDOFF R., ARONOVITCH J. Microbiologic determination of folic acid derivatives in blood. Blood. 1962 Nov;20:609–616. [PubMed] [Google Scholar]
  6. GROSSOWICZ N., MANDELBAUM F. Sparing of folinic acid by thymidine. Science. 1961 Jun 2;133(3466):1773–1773. doi: 10.1126/science.133.3466.1773. [DOI] [PubMed] [Google Scholar]
  7. Howell S. B., Tamerius R. K. Achievement of long duration methotrexate exposure with concurrent low dose thymidine protection: influence of methotrexate pharmacokinetics. Eur J Cancer. 1980 Nov;16(11):1427–1432. doi: 10.1016/0014-2964(80)90051-1. [DOI] [PubMed] [Google Scholar]
  8. JENSEN E. M., SEELEY H. W. The nutrition and physiology of the genus Pediococcus. J Bacteriol. 1954 Apr;67(4):484–488. doi: 10.1128/jb.67.4.484-488.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackson R. C. Modulation of methotrexate toxicity by thymidine: sequence-dependent biochemical effects. Mol Pharmacol. 1980 Sep;18(2):281–286. [PubMed] [Google Scholar]
  10. Jensen K. F., Leer J. C., Nygaard P. Thymine utilization in Escherichia coli K12 on the role of deoxyribose 1-phosphate and thymidine phosphorylase. Eur J Biochem. 1973 Dec 17;40(2):345–354. doi: 10.1111/j.1432-1033.1973.tb03203.x. [DOI] [PubMed] [Google Scholar]
  11. LAMPEN J. O., WANG T. P. The mechanism of action of Lactobacillus pentosus nucleosidase. J Biol Chem. 1952 Sep;198(1):385–395. [PubMed] [Google Scholar]
  12. Mandelbaum-Shavit F., Grossowicz N. Dihydrofolate reductase in Pediococcus cerevisiae strains susceptible and resistant to amethopterin. Antimicrob Agents Chemother. 1974 Sep;6(3):369–371. doi: 10.1128/aac.6.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mandelbaum-Shavit F., Grossowicz N. Transport of folinate and related compounds in Pediococcus cerevisiae. J Bacteriol. 1970 Oct;104(1):1–7. doi: 10.1128/jb.104.1.1-7.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Munch-Petersen A. Deoxyribonucleoside catabolism and thymine incorporation in mutants of Escherichia coli lacking deoxyriboaldolase. Eur J Biochem. 1970 Jul;15(1):191–202. doi: 10.1111/j.1432-1033.1970.tb00994.x. [DOI] [PubMed] [Google Scholar]
  15. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. OKADA T., HOMMA J., SONOHARA H. Improved method for obtaining thymineless mutants of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1962 Sep;84:602–603. doi: 10.1128/jb.84.3.602-603.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OKADA T., YANAGISAWA K., RYAN F. J. Elective production of thymine-less mutants. Nature. 1960 Oct 22;188:340–341. doi: 10.1038/188340a0. [DOI] [PubMed] [Google Scholar]
  18. Pritchard R. H. Review lecture on the growth and form of a bacterial cell. Philos Trans R Soc Lond B Biol Sci. 1974 Feb 21;267(886):303–336. doi: 10.1098/rstb.1974.0003. [DOI] [PubMed] [Google Scholar]
  19. WAHBA A. J., FRIEDKIN M. The enzymatic synthesis of thymidylate. I. Early steps in the purification of thymidylate synthetase of Escherichia coli. J Biol Chem. 1962 Dec;237:3794–3801. [PubMed] [Google Scholar]
  20. WANG T. P., LAMPEN J. O. The cleavage of adenosine, cytidine, and xanthosine by Lactobacillus pentosus. J Biol Chem. 1951 Sep;192(1):339–347. [PubMed] [Google Scholar]
  21. Wachsman J. T., Kemp S., Kogg L. Thymineless death in Bacillus megaterium. J Bacteriol. 1964 May;87(5):1079–1086. doi: 10.1128/jb.87.5.1079-1086.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilson M. C., Farmer J. L., Rothman F. Thymidylate synthesis and aminopterin resistance in Bacillus subtilis. J Bacteriol. 1966 Jul;92(1):186–196. doi: 10.1128/jb.92.1.186-196.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES