Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):692–701. doi: 10.1128/jb.150.2.692-701.1982

Facilitation of Plasmid Transfer in Streptococcus pneumoniae by Chromosomal Homology

Paloma Lopez 1,, Manuel Espinosa 1,, Diane L Stassi 1, Sanford A Lacks 1
PMCID: PMC216418  PMID: 6279568

Abstract

The frequency of plasmid establishment in the transformation of Streptococcus pneumoniae by plasmid DNA was increased more than 10-fold when the plasmid carried DNA homologous to the host chromosome. Perfect homology was not necessary for such facilitation; small additions or deletions were tolerated, but extensive deletions in the homologous segment of either plasmid or chromosome reduced or eliminated facilitation. The facilitated plasmid transfer showed a linear dependence on monomeric plasmid concentration rather than the quadratic dependence found in the absence of homology, which indicated that entering plasmid fragments interacted with the chromosome rather than with each other to establish a plasmid replicon. Restriction enzyme cleavage of the plasmid in the nonhomologous segment destroyed its activity, but cleavage in the homologous segment or even enzymatic removal of part of that segment did not prevent plasmid transfer, and plasmids of the original size were established. In facilitated transfer, chromosomal markers (additions and deletions as well as single-site mutations) entered the plasmid with a frequency ranging from 10 to 90% depending on the marker location. Several possible mechanisms for the establishment of plasmids in the presence of chromosomal homology and for the transfer of chromosomal information are considered. They depend on synapsis of the newly entered single-strand plasmid fragment with the host chromosome and subsequent copying of, donation from, or integration into the homologous chromosomal segment. After plasmid establishment, equilibration of donor and chromosomal markers between the chromosome and the plasmid pool, presumably by homologous recombination events, was observed.

Full text

PDF
692

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barany F., Tomasz A. Genetic transformation of Streptococcus pneumoniae by heterologous plasmid deoxyribonucleic acid. J Bacteriol. 1980 Nov;144(2):698–709. doi: 10.1128/jb.144.2.698-709.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canosi U., Iglesias A., Trautner T. A. Plasmid transformation in Bacillus subtilis: effects of insertion of Bacillus subtilis DNA into plasmid pC194. Mol Gen Genet. 1981;181(4):434–440. doi: 10.1007/BF00428732. [DOI] [PubMed] [Google Scholar]
  3. Canosi U., Morelli G., Trautner T. A. The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Mol Gen Genet. 1978 Nov 9;166(3):259–267. doi: 10.1007/BF00267617. [DOI] [PubMed] [Google Scholar]
  4. Duncan C. H., Wilson G. A., Young F. E. Mechanism of integrating foreign DNA during transformation of Bacillus subtilis. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3664–3668. doi: 10.1073/pnas.75.8.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Galizzi A., Scoffone F., Milanesi G., Albertini A. M. Integration and excision of a plasmid in Bacillus subtilis. Mol Gen Genet. 1981;182(1):99–105. doi: 10.1007/BF00422774. [DOI] [PubMed] [Google Scholar]
  6. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horwitz A. H., Heffernan L., Cass L., Miyada C. G., Wilcox G. Construction of pBR322-ara hybrid plasmids by in vivo recombination. Mol Gen Genet. 1980;179(3):615–625. doi: 10.1007/BF00271752. [DOI] [PubMed] [Google Scholar]
  8. Hotchkiss R. D. CYCLICAL BEHAVIOR IN PNEUMOCOCCAL GROWTH AND TRANSFORMABILITY OCCASIONED BY ENVIRONMENTAL CHANGES. Proc Natl Acad Sci U S A. 1954 Feb;40(2):49–55. doi: 10.1073/pnas.40.2.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lacks S. A. Purification and properties of the complementary endonucleases DpnI and DpnII. Methods Enzymol. 1980;65(1):138–146. doi: 10.1016/s0076-6879(80)65019-8. [DOI] [PubMed] [Google Scholar]
  10. Lacks S. Genetic regulation of maltosaccharide utilization in Pneumococcus. Genetics. 1968 Dec;60(4):685–706. doi: 10.1093/genetics/60.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lacks S. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics. 1966 Jan;53(1):207–235. doi: 10.1093/genetics/53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lacks S. Uptake of circular deoxyribonucleic acid and mechanism of deoxyribonucleic acid transport in genetic transformation of Streptococcus pneumoniae. J Bacteriol. 1979 May;138(2):404–409. doi: 10.1128/jb.138.2.404-409.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Raibaud O., Schwartz M. Restriction map of the Escherichia coli malA region and identification of the malT product. J Bacteriol. 1980 Aug;143(2):761–771. doi: 10.1128/jb.143.2.761-771.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Raina J. L., Ravin A. W. Superhelical DNA in Streptococcus sanguis: role in recombination in vivo. Mol Gen Genet. 1979 Oct 3;176(2):171–181. doi: 10.1007/BF00273211. [DOI] [PubMed] [Google Scholar]
  15. Rapoport G., Klier A., Billault A., Fargette F., Dedonder R. Construction of a colony bank of E. coli containing hybrid plasmids representative of the Bacillus subtilis 168 genome. Expression of functions harbored by the recombinant plasmids in B. subtilis. Mol Gen Genet. 1979 Oct 3;176(2):239–245. doi: 10.1007/BF00273218. [DOI] [PubMed] [Google Scholar]
  16. SINSHEIMER R. L., STARMAN B., NAGLER C., GUTHRIE S. The process of infection with bacteriophage phi-XI74. I. Evidence for a "replicative form". J Mol Biol. 1962 Mar;4:142–160. doi: 10.1016/s0022-2836(62)80047-3. [DOI] [PubMed] [Google Scholar]
  17. Saunders C. W., Guild W. R. Monomer plasmid DNA transforms Streptococcus pneumoniae. Mol Gen Genet. 1981;181(1):57–62. doi: 10.1007/BF00339005. [DOI] [PubMed] [Google Scholar]
  18. Saunders C. W., Guild W. R. Pathway of plasmid transformation in Pneumococcus: open circular and linear molecules are active. J Bacteriol. 1981 May;146(2):517–526. doi: 10.1128/jb.146.2.517-526.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saunders C. W., Guild W. R. Properties and transforming activities of two plasmids in Streptococcus pneumoniae. Mol Gen Genet. 1980;180(3):573–578. doi: 10.1007/BF00268062. [DOI] [PubMed] [Google Scholar]
  20. Setlow J. K., Notani N. K., McCarthy D., Clayton N. L. Transformation of Haemophilus influenzae by plasmid RSF0885 containing a cloned segment of chromosomal deoxyribonucleic acid. J Bacteriol. 1981 Dec;148(3):804–811. doi: 10.1128/jb.148.3.804-811.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shibata T., DasGupta C., Cunningham R. P., Radding C. M. Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1638–1642. doi: 10.1073/pnas.76.4.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stassi D. L., Lopez P., Espinosa M., Lacks S. A. Cloning of chromosomal genes in Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7028–7032. doi: 10.1073/pnas.78.11.7028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tomizawa J. I., Sakakibara Y., Kakefuda T. Replication of colicin E1 plasmid DNA added to cell extracts. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1050–1054. doi: 10.1073/pnas.72.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weinrauch Y., Lacks S. A. Nonsense mutations in the amylomaltase gene and other loci of Streptococcus pneumoniae. Mol Gen Genet. 1981;183(1):7–12. doi: 10.1007/BF00270130. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES