Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):747–754. doi: 10.1128/jb.150.2.747-754.1982

Aryl-l-Aminoacylamidase Activities in Extracts of Streptococcus durans

Edward J Machuga 1
PMCID: PMC216425  PMID: 7068533

Abstract

Two distinct enzymes with aryl-l-aminoacylamidase activity were found in cellular extracts of Streptococcus durans. One of these enzymes was strictly an arylamidase lacking any observable N-terminal exopeptidase activity. The other enzyme functioned as an aminopeptidase capable of catalyzing the hydrolysis of a variety of l-peptide and arylamide substrates. The arylamidase (molecular weight, 80,000) purified 425-fold to homogeneity preferred arylamides containing large hydrophobic side chains, whereas the partially purified aminopeptidase (molecular weight, 300,000) preferred substrates with small nonpolar or basic side chains. Neither enzyme contained any endopeptidase or carboxypeptidase activity. The purified arylamidase was unaffected by metal chelators, but Mn2+ and Mg2+ did act as nonessential activators exclusively affecting the maximal velocity. The arylamidase-catalyzed hydrolysis of l-leucyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km (pK1 of 7.2; pK2 of 8.5), whereas the log Vmax-versus-pH profile showed only an acid limb (pK of 6.8). The ionizable group responsible for the basic limb of the log Vmax/Km-versus-pH profile corresponded to the α-amino group of the substrate l-leucyl-p-nitroanilide (pKa = 8.5). Diazoacetyl-dl-norleucine methyl ester (2 mM) in the presence of 100 mM Cu2+ caused a rapid inactivation of the enzyme (t½ of 24 min). Neither parachloromercuribenzoate (0.5 mM) nor N-ethylmaleimide (50 mM) had any effect on the arylamidase activity. Reversible noncompetitive inhibition was observed for iodoacetate (Ki of 30 mM), N-acetylimidazole (Ki of 4.0 mM), and ethyl acetimidate (Ki of 45 mM), although time-dependent irreversible inactivation was not observed with these reagents.

Full text

PDF
747

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behal F. J., Cox S. T. Arylamidase of Neisseria catarrhalis. J Bacteriol. 1968 Oct;96(4):1240–1248. doi: 10.1128/jb.96.4.1240-1248.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behal F. J., Little G. H., Klein R. A. Arylamidase of human liver. Biochim Biophys Acta. 1969 Mar 18;178(1):118–127. doi: 10.1016/0005-2744(69)90138-7. [DOI] [PubMed] [Google Scholar]
  3. Binkley F., Leibach F., King N. A new method of peptidase assay and the separation of three leucylglycinases of renal tissues. Arch Biochem Biophys. 1968 Nov;128(2):397–405. doi: 10.1016/0003-9861(68)90046-5. [DOI] [PubMed] [Google Scholar]
  4. Desmond E. P., Starnes W. L., Behal F. J. Aminopeptidases of Bacillus subtilis. J Bacteriol. 1975 Oct;124(1):353–363. doi: 10.1128/jb.124.1.353-363.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. El Soda M., Desmazeaud M. J., Bergère J. L. Peptide hydrolases of Lactobacillus casei: isolation and general properties of various peptidase activities. J Dairy Res. 1978 Oct;45(3):445–455. doi: 10.1017/s0022029900016666. [DOI] [PubMed] [Google Scholar]
  6. FOLK J. E., PIEZ K. A., CARROLL W. R., GLADNER J. A. Carboxy-peptidase B. 4. Purification and characterization of the porcine enzyme. J Biol Chem. 1960 Aug;235:2272–2277. [PubMed] [Google Scholar]
  7. FOLK J. E., SCHIRMER E. W. THE PORCINE PANCREATIC CARBOXYPEPTIDASE A SYSTEM. I. THREE FORMS OF THE ACTIVE ENZYME. J Biol Chem. 1963 Dec;238:3884–3894. [PubMed] [Google Scholar]
  8. Frey J., Röhm K. H. Subcellular localization and levels of aminopeptidases and dipeptidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1978 Nov 10;527(1):31–41. doi: 10.1016/0005-2744(78)90253-x. [DOI] [PubMed] [Google Scholar]
  9. Hunkapiller M. W., Smallcombe S. H., Whitaker D. R., Richards J. H. Carbon nuclear magnetic resonance studies of the histidine residue in alpha-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry. 1973 Nov 6;12(23):4732–4743. doi: 10.1021/bi00747a028. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Little G. H., Behal F. J. Hydrolysis of di- and oligopeptides by human liver arylamidase. Proc Soc Exp Biol Med. 1971 Mar;136(3):954–957. doi: 10.3181/00379727-136-35404. [DOI] [PubMed] [Google Scholar]
  12. Lundblad R. L., Stein W. H. On the reaction of diazoacetyl compounds with pepsin. J Biol Chem. 1969 Jan 10;244(1):154–160. [PubMed] [Google Scholar]
  13. MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
  14. Prescott J. M., Wilkes S. H. Aeromonas aminopeptidase. Methods Enzymol. 1976;45:530–543. doi: 10.1016/s0076-6879(76)45047-4. [DOI] [PubMed] [Google Scholar]
  15. Rajagopalan T. G., Stein W. H., Moore S. The inactivation of pepsin by diazoacetylnorleucine methyl ester. J Biol Chem. 1966 Sep 25;241(18):4295–4297. [PubMed] [Google Scholar]
  16. Riley P. S., Behal F. J. Amino acid- -naphthylamide hydrolysis by Pseudomonas aeruginosa arylamidase. J Bacteriol. 1971 Nov;108(2):809–816. doi: 10.1128/jb.108.2.809-816.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TUPPY H., WIESBAUER U., WINTERSBERGER E. [Amino acid-p-nitroanilide as a substrate for aminopeptidases and other proteolytic enzymes]. Hoppe Seylers Z Physiol Chem. 1962 Nov 15;329:278–288. doi: 10.1515/bchm2.1962.329.1.278. [DOI] [PubMed] [Google Scholar]
  18. Timasheff S. N., Rupley J. A. Infrared titration of lysozyme carboxyls. Arch Biochem Biophys. 1972 May;150(1):318–323. doi: 10.1016/0003-9861(72)90041-0. [DOI] [PubMed] [Google Scholar]
  19. Wagner F. W., Ray L. E., Ajabnoor M. A., Ziemba P. E., Hall R. L. Bacillus subtilis aminopeptidase: purification, characterization and some enzymatic properties. Arch Biochem Biophys. 1979 Oct 1;197(1):63–72. doi: 10.1016/0003-9861(79)90219-4. [DOI] [PubMed] [Google Scholar]
  20. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES