Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 May;150(2):934–943. doi: 10.1128/jb.150.2.934-943.1982

Effect of Intracytoplasmic Membrane Development on Oxidation of Sorbitol and Other Polyols by Gluconobacter oxydans

S A White 1,, G W Claus 1
PMCID: PMC216447  PMID: 7068538

Abstract

By using membrane-bound dehydrogenases, Gluconobacter oxydans characteristically accomplishes single-step oxidation of many polyols and quantitative release of the oxidation product into the medium. These cells typically differentiate by forming intracytoplasmic membranes (ICM) after exponential growth on glycerol. Earlier experiments demonstrated that glycerol-grown cells containing ICM oxidized glycerol more rapidly than cells which were harvested during exponential growth and lacked ICM (Claus et al., J. Bacteriol. 123:1169-1183). This report demonstrates that ICM are also formed after growth on sorbitol. Sorbitol-grown, ICM-containing maximum stationary-phase (MSP) cells showed from 50 to 300% greater oxidation (respiration) rates on mannitol, glycerol, glucose, meso-erythritol, and meso-inositol than did exponential-phase (EXP) cells which lacked ICM. Both EXP and MSP cells exhibited maximum sorbitol oxidation at pH 5.0, 38°C, and 5% (wt/vol) sorbitol. When assayed under these optimum conditions, ICM-containing MSP cells demonstrated a 72% increase in respiration on sorbitol compared with that of EXP cells lacking ICM (oxygen quotients of 3,100 and 1,800, respectively). Gas chromatographic studies showed that sorbose was the only detectable product released from cells during oxygen quotient analysis. The specific activity of particulate-bound sorbitol dehydrogenase from ICM-containing MSP cells was twice that obtained from particulate fractions prepared from EXP cells lacking ICM. These results show that neither ICM formation after exponential growth nor increased respiration of other polyols is dependent upon the polyol used to grow cells. Our results suggest that increased respiratory activity of MSP cells is caused both by ICM formation and by increased synthesis (or activity) of the polyol dehydrogenases found in these membranes.

Full text

PDF
934

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARCUS A. C., EDSON N. L. Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochem J. 1956 Nov;64(3):385–394. doi: 10.1042/bj0640385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batzing B. L., Claus G. W. Fine structural changes of Acetobacter suboxydans during growth in a defined medium. J Bacteriol. 1973 Mar;113(3):1455–1461. doi: 10.1128/jb.113.3.1455-1461.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butlin K. R. The enzyme system of Bact. suboxydans: Variation of aerobic activity with age of culture. Biochem J. 1938 Mar;32(3):508–512. doi: 10.1042/bj0320508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COOKSEY K. E., RAINBOW C. Metabolic patterns in acetic acid bacteria. J Gen Microbiol. 1962 Jan;27:135–142. doi: 10.1099/00221287-27-1-135. [DOI] [PubMed] [Google Scholar]
  5. Claus G. W., Batzing B. L., Baker C. A., Goebel E. M. Intracytoplasmic membrane formation and increased oxidation of glycerol growth of Gluconobacter oxydans. J Bacteriol. 1975 Sep;123(3):1169–1183. doi: 10.1128/jb.123.3.1169-1183.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DELEY J., KERSTERS K. OXIDATION OF ALIPHATIC GLYCOLS BY ACETIC ACID BACTERIA. Bacteriol Rev. 1964 Jun;28:164–180. [PMC free article] [PubMed] [Google Scholar]
  7. Davies S. L., Whittenbury R. Fine structure of methane and other hydrocarbon-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):227–232. doi: 10.1099/00221287-61-2-227. [DOI] [PubMed] [Google Scholar]
  8. FEWSTER J. A. Growth of acetobacter suboxydans and the oxidation of aldoses, related carboxylic acids, and aldehydes. Biochem J. 1958 Aug;69(4):582–595. doi: 10.1042/bj0690582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenfield S., Claus G. W. Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol. 1972 Dec;112(3):1295–1301. doi: 10.1128/jb.112.3.1295-1301.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heefner D. L., Claus G. W. Change in quantity of lipids and cell size during intracytoplasmic membrane formation in Gluconobacter oxydans. J Bacteriol. 1976 Mar;125(3):1163–1171. doi: 10.1128/jb.125.3.1163-1171.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heefner D. L., Claus G. W. Lipid and fatty acid composition of Gluconobacter oxydans before and after intracytoplasmic membrane formation. J Bacteriol. 1978 Apr;134(1):38–47. doi: 10.1128/jb.134.1.38-47.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KERSTERS K., WOOD W. A., DELEY J. POLYOL DEHYDROGENASES OF GLUCONOBACTER OXYDANS. J Biol Chem. 1965 Mar;240:965–974. [PubMed] [Google Scholar]
  13. KING T. E., CHELDELIN V. H. Phosphorylative and non-phosphorylative oxidation in Acetobacter suboxydans. J Biol Chem. 1952 Sep;198(1):135–141. [PubMed] [Google Scholar]
  14. KING T. E., CHELDELIN V. H. Sources of energy and the dinitrophenol effect in the growth of Acetobacter suboxydans. J Bacteriol. 1953 Nov;66(5):581–584. doi: 10.1128/jb.66.5.581-584.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KLUNGSOYR L., KING T. E., CHELDELIN V. H. Oxidative phosphorylation in Acetobacter suboxydans. J Biol Chem. 1957 Jul;227(1):135–149. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Liber E. E., Dorozhko A. I., Pomortseva N. V. Indutsiruemye kofermentom medlennye perekhody NADP-sorbitoldegidrogenazy iz Gluconobacter oxydans. Biokhimiia. 1978 Jun;43(6):1067–1078. [PubMed] [Google Scholar]
  18. Manius G., Mahn F. P., Venturella V. S., Senkowski B. Z. GLC determination of sorbitol and mannitol in aqueous solutions. J Pharm Sci. 1972 Nov;61(11):1831–1835. doi: 10.1002/jps.2600611134. [DOI] [PubMed] [Google Scholar]
  19. Oppenheim J., Marcus L. Correlation of ultrastructure in Azotobacter vinelandii with nitrogen source for growth. J Bacteriol. 1970 Jan;101(1):286–291. doi: 10.1128/jb.101.1.286-291.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pate J. L., Shah V. K., Brill W. J. Internal membrane control in Azotobacter vinelandii. J Bacteriol. 1973 Jun;114(3):1346–1350. doi: 10.1128/jb.114.3.1346-1350.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patel R., Hoare L., Hoare D. S., Taylor B. F. Incomplete tricarboxylic acid cycle in a type I methylotroph, Methylococcus capsulatus. J Bacteriol. 1975 Jul;123(1):382–384. doi: 10.1128/jb.123.1.382-384.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Patt T. E., Cole G. C., Bland J., Hanson R. S. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol. 1974 Nov;120(2):955–964. doi: 10.1128/jb.120.2.955-964.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. RAZUMOVSKAIA Z. G., ZHDAN-PUSHKINA S. M. O vliianii posevnoi kul'tury na protsess okisleniia sorbita Acetobacter suboxydans. Mikrobiologiia. 1956 Jan-Feb;25(1):16–24. [PubMed] [Google Scholar]
  24. Tosic J. Oxidations in acetobacter. Biochem J. 1946;40(2):209–214. doi: 10.1042/bj0400209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watson S. W., Mandel M. Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J Bacteriol. 1971 Aug;107(2):563–569. doi: 10.1128/jb.107.2.563-569.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weaver T. L., Dugan P. R. Ultrastruct of Methylosinus trichosporium as revealed by freeze etching. J Bacteriol. 1975 Feb;121(2):704–710. doi: 10.1128/jb.121.2.704-710.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES