Abstract
Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was very unstable, resulting in low recovery of activity and low purity after a six-step purification procedure. The enzyme had a pH optimum of 8.0 to 8.3. The Km values for delta 1-piperideine-2-carboxylate and NADPH were 0.23 and 0.13 mM, respectively. NADPH at concentrations above 0.15 mM was inhibitory to the enzyme. Delta 1-pyrroline-5-carboxylate, pyroglutamate, and NADH were poor substrates or coenzyme for delta 1-piperideine-2-carboxylate reductase. The enzyme reaction from delta 1-piperideine-2-carboxylate to L-pipecolate was irreversible. EDTA, sodium pyrophosphate, and dithiothreitol at concentrations of 1 mM protected the enzyme during storage. The enzyme was inhibited almost totally by Zn2+, Mn2+, Hg2+ Co2+, and p-chloromercuribenzoate at concentrations of 0.1 mM. The enzyme had a molecular weight of about 200,000. Both D-lysine and L-lysine were good inducers for the enzyme. Neither delta1-piperideine-2-carboxylate nor L-pipecolate was an effective inducer for the enzyme. P. putida cells grew on D-lysine only after a 5- to 8-h lag, which could be abolished by adding a supplement of 0.01% alpha-ketoglutarate or other readily metabolizable compounds. Such a supplement also converted the noncoordinate induction of this enzyme and pipecolate oxidase, both of the D-lysine pathway, to coordinacy. However, this effect was not observed if the enzyme pair was from different pathways of lysine metabolism in this organism (i.e., the D- and L-lysine pathways).
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS E. Hydroxyproline metabolism. I. Conversion to alpha-ketoglutarate by extracts of Pseudomonas. J Biol Chem. 1959 Aug;234(8):2073–2084. [PubMed] [Google Scholar]
- Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BASSO L. V., RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. delta1-Piperideine-6-carboxylic acid and alpha-aminoadipic acid-delta-semial-dehyde. J Biol Chem. 1962 Jul;237:2239–2245. [PubMed] [Google Scholar]
- Baginsky M. L., Rodwell V. W. Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida. J Bacteriol. 1966 Aug;92(2):424–432. doi: 10.1128/jb.92.2.424-432.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baginsky M. L., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase. J Bacteriol. 1967 Oct;94(4):1034–1039. doi: 10.1128/jb.94.4.1034-1039.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvert A. F., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J Biol Chem. 1966 Jan 25;241(2):409–414. [PubMed] [Google Scholar]
- Chang Y. E. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem. 1978 Feb;30(2):347–354. doi: 10.1111/j.1471-4159.1978.tb06536.x. [DOI] [PubMed] [Google Scholar]
- Chang Y. F., Adams E. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J Bacteriol. 1974 Feb;117(2):753–764. doi: 10.1128/jb.117.2.753-764.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang Y. F., Adams E. Factors influencing growth on L-lysine by Pseudomonas. Regulation of terminal enzymes in the delta-aminovalerate pathway and growth stimulation by alpha ketoglutarate. J Biol Chem. 1977 Nov 25;252(22):7987–7991. [PubMed] [Google Scholar]
- Chang Y. F., Adams E. Glutarate semialdehyde dehydrogenase of Pseudomonas. Purification, properties, and relation to L-lysine catabolism. J Biol Chem. 1977 Nov 25;252(22):7979–7986. [PubMed] [Google Scholar]
- Chang Y. F., Adams E. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Biochem Biophys Res Commun. 1971 Nov 5;45(3):570–577. doi: 10.1016/0006-291x(71)90455-4. [DOI] [PubMed] [Google Scholar]
- Chang Y. F. Lysine metabolism in the rat brain: blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J Neurochem. 1978 Feb;30(2):355–360. doi: 10.1111/j.1471-4159.1978.tb06537.x. [DOI] [PubMed] [Google Scholar]
- Chang Y. F. Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun. 1976 Mar 8;69(1):174–180. doi: 10.1016/s0006-291x(76)80288-4. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Fothergill J. C., Guest J. R. Catabolism of L-lysine by Pseudomonas aeruginosa. J Gen Microbiol. 1977 Mar;99(1):139–155. doi: 10.1099/00221287-99-1-139. [DOI] [PubMed] [Google Scholar]
- Hernandez M. F., Chang Y. F. In vitro synthesis of L-pipecolate from L-lysine: inconsistent with epsilon-N-acetyl-L-lysine as an obligatory intermediate. Biochem Biophys Res Commun. 1980 Apr 14;93(3):762–769. doi: 10.1016/0006-291x(80)91142-0. [DOI] [PubMed] [Google Scholar]
- ICHIHARA A., ICHIHARA E. A. Metabolism of L-lysine by bacterial enzymes. V. Glutaric semialdehyde dehydrogenase. J Biochem. 1961 Feb;49:154–157. doi: 10.1093/oxfordjournals.jbchem.a127272. [DOI] [PubMed] [Google Scholar]
- IRREVERRE F., PIEZ K. A., WOLFF H. L. The separation and determination of cyclic imino acids. J Biol Chem. 1956 Dec;223(2):687–697. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LOWY P. H. The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch Biochem Biophys. 1953 Nov;47(1):228–229. doi: 10.1016/0003-9861(53)90457-3. [DOI] [PubMed] [Google Scholar]
- MANDELSTAM J., JACOBY G. A. INDUCTION AND MULTI-SENSITIVE END-PRODUCT REPRESSION IN THE ENZYMIC PATHWAY DEGRADING MANDELATE IN PSEUDOMONAS FLUORESCENS. Biochem J. 1965 Mar;94:569–577. doi: 10.1042/bj0940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MEISTER A., RADHAKRISHNAN A. N., BUCKLEY S. D. Enzymatic synthesis of L-pipecolic acid and L-proline. J Biol Chem. 1957 Dec;229(2):789–800. [PubMed] [Google Scholar]
- McCarron R. M., Chang Y. F. Aspartokinase of Streptococcus mutans: purification, properties, and regulation. J Bacteriol. 1978 May;134(2):483–491. doi: 10.1128/jb.134.2.483-491.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J Biol Chem. 1971 May 10;246(9):2758–2764. [PubMed] [Google Scholar]
- Müller W. U., Leistner E. Conversion of D-lysine via L-pepecolic acid in Neurospora crassa. Z Naturforsch C. 1975 Mar-Apr;30(2):253–262. doi: 10.1515/znc-1975-3-419. [DOI] [PubMed] [Google Scholar]
- ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
- PETRAKIS P. L., GREENBERG D. M. STUDIES ON L-PROLINE:NAD(P)+2-OXIDOREDUCTASE OF HOG KIDNEY. Biochim Biophys Acta. 1965 Apr 26;99:78–95. doi: 10.1016/s0926-6593(65)80009-1. [DOI] [PubMed] [Google Scholar]
- RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids. J Biol Chem. 1962 Jul;237:2232–2238. [PubMed] [Google Scholar]
- ROTHSTEIN M., MILLER L. L. The conversion of lysine to pipecolic acid in the rat. J Biol Chem. 1954 Dec;211(2):851–858. [PubMed] [Google Scholar]
- Rahman M., Clarke P. H. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):357–369. doi: 10.1099/00221287-116-2-357. [DOI] [PubMed] [Google Scholar]
- Reitz M. S., Rodwell V. W. Delta-aminovaleramidase of Pseudomonas putida. J Biol Chem. 1970 Jun;245(12):3091–3096. [PubMed] [Google Scholar]
- Soda K., Misono H., Yamamoto T. L-Lysine:alpha-ketoglutarate aminotransferase. I. Identification of a product, delta-1-piperideine-6-carboxylic acid. Biochemistry. 1968 Nov;7(11):4102–4109. doi: 10.1021/bi00851a045. [DOI] [PubMed] [Google Scholar]
- Takeda H., Hayaishi O. Crystalline L-lysine oxygenase. J Biol Chem. 1966 Jun 10;241(11):2733–2736. [PubMed] [Google Scholar]
- Takeda H., Yamamoto S., Kojima Y., Hayaishi O. Studies on monooxygenases. I. General properties of crystalline L-lysine monooxygenase. J Biol Chem. 1969 Jun 10;244(11):2935–2941. [PubMed] [Google Scholar]
