Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Mar;149(3):864–871. doi: 10.1128/jb.149.3.864-871.1982

delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.

C W Payton, Y F Chang
PMCID: PMC216472  PMID: 6801013

Abstract

Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was very unstable, resulting in low recovery of activity and low purity after a six-step purification procedure. The enzyme had a pH optimum of 8.0 to 8.3. The Km values for delta 1-piperideine-2-carboxylate and NADPH were 0.23 and 0.13 mM, respectively. NADPH at concentrations above 0.15 mM was inhibitory to the enzyme. Delta 1-pyrroline-5-carboxylate, pyroglutamate, and NADH were poor substrates or coenzyme for delta 1-piperideine-2-carboxylate reductase. The enzyme reaction from delta 1-piperideine-2-carboxylate to L-pipecolate was irreversible. EDTA, sodium pyrophosphate, and dithiothreitol at concentrations of 1 mM protected the enzyme during storage. The enzyme was inhibited almost totally by Zn2+, Mn2+, Hg2+ Co2+, and p-chloromercuribenzoate at concentrations of 0.1 mM. The enzyme had a molecular weight of about 200,000. Both D-lysine and L-lysine were good inducers for the enzyme. Neither delta1-piperideine-2-carboxylate nor L-pipecolate was an effective inducer for the enzyme. P. putida cells grew on D-lysine only after a 5- to 8-h lag, which could be abolished by adding a supplement of 0.01% alpha-ketoglutarate or other readily metabolizable compounds. Such a supplement also converted the noncoordinate induction of this enzyme and pipecolate oxidase, both of the D-lysine pathway, to coordinacy. However, this effect was not observed if the enzyme pair was from different pathways of lysine metabolism in this organism (i.e., the D- and L-lysine pathways).

Full text

PDF
864

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS E. Hydroxyproline metabolism. I. Conversion to alpha-ketoglutarate by extracts of Pseudomonas. J Biol Chem. 1959 Aug;234(8):2073–2084. [PubMed] [Google Scholar]
  2. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BASSO L. V., RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. II. delta1-Piperideine-6-carboxylic acid and alpha-aminoadipic acid-delta-semial-dehyde. J Biol Chem. 1962 Jul;237:2239–2245. [PubMed] [Google Scholar]
  5. Baginsky M. L., Rodwell V. W. Metabolism of Pipecolic Acid in a Pseudomonas Species IV. Electron Transport Particle of Pseudomonas putida. J Bacteriol. 1966 Aug;92(2):424–432. doi: 10.1128/jb.92.2.424-432.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baginsky M. L., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase. J Bacteriol. 1967 Oct;94(4):1034–1039. doi: 10.1128/jb.94.4.1034-1039.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Calvert A. F., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J Biol Chem. 1966 Jan 25;241(2):409–414. [PubMed] [Google Scholar]
  8. Chang Y. E. Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem. 1978 Feb;30(2):347–354. doi: 10.1111/j.1471-4159.1978.tb06536.x. [DOI] [PubMed] [Google Scholar]
  9. Chang Y. F., Adams E. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J Bacteriol. 1974 Feb;117(2):753–764. doi: 10.1128/jb.117.2.753-764.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chang Y. F., Adams E. Factors influencing growth on L-lysine by Pseudomonas. Regulation of terminal enzymes in the delta-aminovalerate pathway and growth stimulation by alpha ketoglutarate. J Biol Chem. 1977 Nov 25;252(22):7987–7991. [PubMed] [Google Scholar]
  11. Chang Y. F., Adams E. Glutarate semialdehyde dehydrogenase of Pseudomonas. Purification, properties, and relation to L-lysine catabolism. J Biol Chem. 1977 Nov 25;252(22):7979–7986. [PubMed] [Google Scholar]
  12. Chang Y. F., Adams E. Induction of separate catabolic pathways for L- and D-lysine in Pseudomonas putida. Biochem Biophys Res Commun. 1971 Nov 5;45(3):570–577. doi: 10.1016/0006-291x(71)90455-4. [DOI] [PubMed] [Google Scholar]
  13. Chang Y. F. Lysine metabolism in the rat brain: blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J Neurochem. 1978 Feb;30(2):355–360. doi: 10.1111/j.1471-4159.1978.tb06537.x. [DOI] [PubMed] [Google Scholar]
  14. Chang Y. F. Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem Biophys Res Commun. 1976 Mar 8;69(1):174–180. doi: 10.1016/s0006-291x(76)80288-4. [DOI] [PubMed] [Google Scholar]
  15. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  16. Fothergill J. C., Guest J. R. Catabolism of L-lysine by Pseudomonas aeruginosa. J Gen Microbiol. 1977 Mar;99(1):139–155. doi: 10.1099/00221287-99-1-139. [DOI] [PubMed] [Google Scholar]
  17. Hernandez M. F., Chang Y. F. In vitro synthesis of L-pipecolate from L-lysine: inconsistent with epsilon-N-acetyl-L-lysine as an obligatory intermediate. Biochem Biophys Res Commun. 1980 Apr 14;93(3):762–769. doi: 10.1016/0006-291x(80)91142-0. [DOI] [PubMed] [Google Scholar]
  18. ICHIHARA A., ICHIHARA E. A. Metabolism of L-lysine by bacterial enzymes. V. Glutaric semialdehyde dehydrogenase. J Biochem. 1961 Feb;49:154–157. doi: 10.1093/oxfordjournals.jbchem.a127272. [DOI] [PubMed] [Google Scholar]
  19. IRREVERRE F., PIEZ K. A., WOLFF H. L. The separation and determination of cyclic imino acids. J Biol Chem. 1956 Dec;223(2):687–697. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. LOWY P. H. The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch Biochem Biophys. 1953 Nov;47(1):228–229. doi: 10.1016/0003-9861(53)90457-3. [DOI] [PubMed] [Google Scholar]
  22. MANDELSTAM J., JACOBY G. A. INDUCTION AND MULTI-SENSITIVE END-PRODUCT REPRESSION IN THE ENZYMIC PATHWAY DEGRADING MANDELATE IN PSEUDOMONAS FLUORESCENS. Biochem J. 1965 Mar;94:569–577. doi: 10.1042/bj0940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MEISTER A., RADHAKRISHNAN A. N., BUCKLEY S. D. Enzymatic synthesis of L-pipecolic acid and L-proline. J Biol Chem. 1957 Dec;229(2):789–800. [PubMed] [Google Scholar]
  24. McCarron R. M., Chang Y. F. Aspartokinase of Streptococcus mutans: purification, properties, and regulation. J Bacteriol. 1978 May;134(2):483–491. doi: 10.1128/jb.134.2.483-491.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J Biol Chem. 1971 May 10;246(9):2758–2764. [PubMed] [Google Scholar]
  26. Müller W. U., Leistner E. Conversion of D-lysine via L-pepecolic acid in Neurospora crassa. Z Naturforsch C. 1975 Mar-Apr;30(2):253–262. doi: 10.1515/znc-1975-3-419. [DOI] [PubMed] [Google Scholar]
  27. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  28. PETRAKIS P. L., GREENBERG D. M. STUDIES ON L-PROLINE:NAD(P)+2-OXIDOREDUCTASE OF HOG KIDNEY. Biochim Biophys Acta. 1965 Apr 26;99:78–95. doi: 10.1016/s0926-6593(65)80009-1. [DOI] [PubMed] [Google Scholar]
  29. RAO D. R., RODWELL V. W. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids. J Biol Chem. 1962 Jul;237:2232–2238. [PubMed] [Google Scholar]
  30. ROTHSTEIN M., MILLER L. L. The conversion of lysine to pipecolic acid in the rat. J Biol Chem. 1954 Dec;211(2):851–858. [PubMed] [Google Scholar]
  31. Rahman M., Clarke P. H. Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):357–369. doi: 10.1099/00221287-116-2-357. [DOI] [PubMed] [Google Scholar]
  32. Reitz M. S., Rodwell V. W. Delta-aminovaleramidase of Pseudomonas putida. J Biol Chem. 1970 Jun;245(12):3091–3096. [PubMed] [Google Scholar]
  33. Soda K., Misono H., Yamamoto T. L-Lysine:alpha-ketoglutarate aminotransferase. I. Identification of a product, delta-1-piperideine-6-carboxylic acid. Biochemistry. 1968 Nov;7(11):4102–4109. doi: 10.1021/bi00851a045. [DOI] [PubMed] [Google Scholar]
  34. Takeda H., Hayaishi O. Crystalline L-lysine oxygenase. J Biol Chem. 1966 Jun 10;241(11):2733–2736. [PubMed] [Google Scholar]
  35. Takeda H., Yamamoto S., Kojima Y., Hayaishi O. Studies on monooxygenases. I. General properties of crystalline L-lysine monooxygenase. J Biol Chem. 1969 Jun 10;244(11):2935–2941. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES