Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Mar;149(3):872–879. doi: 10.1128/jb.149.3.872-879.1982

Mechanism of regulation of glucose transport in Rhizobium leguminosarum.

G E de Vries, A A van Brussel, A Quispel
PMCID: PMC216473  PMID: 7061388

Abstract

Multiple glucose transport systems were distinguished in Rhizobium leguminosarum. We found nonlinear Lineweaver-Burk plots for the uptake of glucose, 2-deoxy-D-glucose, and alpha-methyl-D-glucoside, and this implied the existence of at least two uptake mechanisms. Different patterns of inhibition of 2-deoxy-D-glucose uptake and alpha-methyl-D-glucoside uptake at 0.1 mM by various carbohydrates revealed differences in the stereospecificities of the transport systems. Osmotic shock treatment abolished transport activities, and two independent glucose-binding activities were detected in the supernatants. Induction of glucose transport was repressed strongly by L-malate, even in the presence of excess D-glucose. Rhizobium bacteroids showed no significant glucose uptake activity at different oxygen concentrations. These results suggested that glucose transport is repressed by dicarboxylic acids during R. leguminosarum symbiosis.

Full text

PDF
872

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias A., Cerveńansky C., Gardiol A., Martínez-Drets G. Phosphoglucose isomerase mutant of Rhizobium meliloti. J Bacteriol. 1979 Jan;137(1):409–414. doi: 10.1128/jb.137.1.409-414.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bewick M. A., Lo T. C. Dicarboxylic acid transport in Escherichia coli K12: involvement of a binding protein in the translocation of dicarboxylic acids across the outer membrane of the cell envelope. Can J Biochem. 1979 Jun;57(6):653–661. doi: 10.1139/o79-082. [DOI] [PubMed] [Google Scholar]
  3. Courtois B., Hornez J. P., Derieux J. C. Effet de la synthèse d'acide 2 céto-gluconique sur la production d'exopolysaccharides par une souche de Rhizobium meliloti. Can J Microbiol. 1979 Oct;25(10):1191–1196. [PubMed] [Google Scholar]
  4. Furlong C. E., Morris R. G., Kandrach M., Rosen B. P. A multichamber equilibrium dialysis apparatus. Anal Biochem. 1972 Jun;47(2):514–526. doi: 10.1016/0003-2697(72)90146-7. [DOI] [PubMed] [Google Scholar]
  5. Hylemon P. B., Phibbs P. V., Jr Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1041–1048. doi: 10.1016/0006-291x(72)90813-3. [DOI] [PubMed] [Google Scholar]
  6. Kundig W., Roseman S. Sugar transport. I. Isolation of a phosphotransferase system from Escherichia coli. J Biol Chem. 1971 Mar 10;246(5):1393–1406. [PubMed] [Google Scholar]
  7. Laane C., Haaker H., Veeger C. Involvement of the cytoplasmic membrane in nitrogen fixation by Rhizobium leguminosarum bacteroids. Eur J Biochem. 1978 Jun 1;87(1):147–153. doi: 10.1111/j.1432-1033.1978.tb12361.x. [DOI] [PubMed] [Google Scholar]
  8. Lim S. T., Shanmugam K. T. Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP. Biochim Biophys Acta. 1979 May 16;584(3):479–492. doi: 10.1016/0304-4165(79)90121-1. [DOI] [PubMed] [Google Scholar]
  9. Lo T. C., Rayman M. K., Sanwal B. D. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles. Can J Biochem. 1974 Oct;52(10):854–866. doi: 10.1139/o74-122. [DOI] [PubMed] [Google Scholar]
  10. Lynch W. H., MacLeod J., Franklin M. Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens. Can J Microbiol. 1975 Oct;21(10):1560–1572. doi: 10.1139/m75-229. [DOI] [PubMed] [Google Scholar]
  11. Midgley M., Dawes E. A. The regulation of transport of glucose and methyl alpha-glucoside in Pseudomonas aeruginosa. Biochem J. 1973 Feb;132(2):141–154. doi: 10.1042/bj1320141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miyairi S., Fukui S. Glucose-1-phosphate-negative mutant of Agrobacterium tumefaciens. J Bacteriol. 1973 Feb;113(2):658–665. doi: 10.1128/jb.113.2.658-665.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mukkada A. J., Long G. L., Romano A. H. The uptake of 2-deoxy-D-glucose by Pseudomonas aeruginosa and its regulation. Biochem J. 1973 Feb;132(2):155–162. doi: 10.1042/bj1320155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neal J. L. Analysis of Michaelis kinetics for two independent, saturable membrane transport functions. J Theor Biol. 1972 Apr;35(1):113–118. doi: 10.1016/0022-5193(72)90196-8. [DOI] [PubMed] [Google Scholar]
  15. Ng F. M., Dawes E. A. Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem J. 1973 Feb;132(2):129–140. doi: 10.1042/bj1320129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ronson C. W., Primrose S. B. Effect of glucose on polyol metabolism by Rhizobium trifolii. J Bacteriol. 1979 Sep;139(3):1075–1078. doi: 10.1128/jb.139.3.1075-1078.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stinson M. W., Cohen M. A., Merrick J. M. Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa. J Bacteriol. 1977 Aug;131(2):672–681. doi: 10.1128/jb.131.2.672-681.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stumpf D. K., Burris R. H. A micromethod for the purification and quantification of organic acids of the tricarboxylic acid cycle in plant tissues. Anal Biochem. 1979 May;95(1):311–315. doi: 10.1016/0003-2697(79)90221-5. [DOI] [PubMed] [Google Scholar]
  19. Ucker D. S., Signer E. R. Catabolite-repression-like phenomenon in Rhizobium meliloti. J Bacteriol. 1978 Dec;136(3):1197–1200. doi: 10.1128/jb.136.3.1197-1200.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whiting P. H., Midgley M., Dawes E. A. The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol. 1976 Feb;92(2):304–310. doi: 10.1099/00221287-92-2-304. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES