Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Mar;149(3):1005–1012. doi: 10.1128/jb.149.3.1005-1012.1982

Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.

G Eisbrenner, H J Evans
PMCID: PMC216489  PMID: 6277845

Abstract

An investigation has been conducted to identify electron transport carriers that participate in the oxidation of H2 by H2 uptake-positive strains of Rhizobium japonicum bacteroids. We have observed that the reduced form of dibromothymoquinone at a concentration of 0.2 mM strongly inhibited H2 uptake, endogenous respiration, and C2H2 reduction by bacteroid suspensions. Reduced dibromothymoquinone, however, failed to inhibit the transfer of electrons from H2 to methylene blue under anaerobic conditions, indicating that the hydrogenase per se is insensitive to this inhibitor. Metronidazole, at 1 mM, affected rates of H2 uptake and endogenous respiration only slightly, but strongly inhibited C2H2 reduction. Evidence for H2-dependent cytochrome reduction in an H2 uptake-positive strain of R. japonicum bacteroids is presented. In kinetic studies, the rates of reduction of the type b and c cytochromes in the presence of H2 were shown to be severalfold higher than the rates due to endogenous respiration alone. With hydrogenase-deficient mutants of R. japonicum, no measurable effect of H2 on cytochrome reduction was observed. Our results indicate that ubiquinone and cytochromes of types b and c are involved in the oxyhydrogen reaction in R. japonicum.

Full text

PDF
1005

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleby C. A. Electron transport systems of Rhizobium japonicum. I. Haemoprotein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteroids from N2-fixing root nodules. Biochim Biophys Acta. 1969 Jan 14;172(1):71–87. doi: 10.1016/0005-2728(69)90093-0. [DOI] [PubMed] [Google Scholar]
  2. Arp D. J., Burris R. H. Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules. Biochim Biophys Acta. 1979 Oct 11;570(2):221–230. doi: 10.1016/0005-2744(79)90142-6. [DOI] [PubMed] [Google Scholar]
  3. Bongers L. Phosphorylation in hydrogen bacteria. J Bacteriol. 1967 May;93(5):1615–1623. doi: 10.1128/jb.93.5.1615-1623.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bothe H., Distler E., Eisbrenner G. Hydrogen metabolism in blue-green algae. Biochimie. 1978;60(3):277–289. doi: 10.1016/s0300-9084(78)80824-4. [DOI] [PubMed] [Google Scholar]
  5. Bothe H., Tennigkeit J., Eisbrenner G. The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Arch Microbiol. 1977 Jul 26;114(1):43–49. doi: 10.1007/BF00429628. [DOI] [PubMed] [Google Scholar]
  6. Carter K. R., Rawlings J., Orme-Johnson W. H., Becker R. R., Evans H. J. Purification and characterization of a ferredoxin from Rhizobium japonicum bacteroids. J Biol Chem. 1980 May 10;255(9):4213–4223. [PubMed] [Google Scholar]
  7. Chain R. K., Malkin R. On the interaction of 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with bound electron carriers in spinach chloroplasts. Arch Biochem Biophys. 1979 Oct 1;197(1):52–56. doi: 10.1016/0003-9861(79)90217-0. [DOI] [PubMed] [Google Scholar]
  8. Chen J. S., Blanchard D. K. A simple hydrogenase-linked assay for ferredoxin and flavodoxin. Anal Biochem. 1979 Feb;93(1):216–222. [PubMed] [Google Scholar]
  9. Ching T. M., Hedtke S. Isolation of bacteria, transforming bacteria, and bacteroids from soybean nodules. Plant Physiol. 1977 Nov;60(5):771–774. doi: 10.1104/pp.60.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dixon R. O. Hydrogenase in pea root nodule bacterioids. Arch Mikrobiol. 1968;62(3):272–283. doi: 10.1007/BF00413898. [DOI] [PubMed] [Google Scholar]
  11. Draber W., Trebst A., Harth E. On a new inhibitor of photosynthetic electron-transport in isolated chloroplasts. Z Naturforsch B. 1970 Oct;25(10):1157–1159. doi: 10.1515/znb-1970-1018. [DOI] [PubMed] [Google Scholar]
  12. Emerich D. W., Ruiz-Argüeso T., Ching T. M., Evans H. J. Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol. 1979 Jan;137(1):153–160. doi: 10.1128/jb.137.1.153-160.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emerich D. W., Ruiz-Argüeso T., Russell S. A., Evans H. J. Investigation of the H(2) Oxidation System in Rhizobium japonicum 122 DES Nodule Bacteroids. Plant Physiol. 1980 Dec;66(6):1061–1066. doi: 10.1104/pp.66.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  15. Lepo J. E., Hickok R. E., Cantrell M. A., Russell S. A., Evans H. J. Revertible hydrogen uptake-deficient mutants of Rhizobium japonicum. J Bacteriol. 1981 May;146(2):614–620. doi: 10.1128/jb.146.2.614-620.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loschen G., Azzi A. Dibromothymoquinone: a new inhibitor of mitochondrial electron transport at the level of ubiquinone. FEBS Lett. 1974 Apr 15;41(1):115–117. doi: 10.1016/0014-5793(74)80967-1. [DOI] [PubMed] [Google Scholar]
  17. O'Brien R. W., Morris J. G. Effect of metronidazole on hydrogen production by Clostridium acetobutylicum. Arch Mikrobiol. 1972;84(3):225–233. doi: 10.1007/BF00425200. [DOI] [PubMed] [Google Scholar]
  18. Peschek G. A. Aerobic hydrogenase activity in Anacystis nidulans. The oxyhydrogen reaction. Biochim Biophys Acta. 1979 Nov 8;548(2):203–215. doi: 10.1016/0005-2728(79)90129-4. [DOI] [PubMed] [Google Scholar]
  19. Peschek G. A. Restoration of respiratory electron-transport reactions in quinone-depleted particle preparations from Anacystis nidulans. Biochem J. 1980 Feb 15;186(2):515–523. doi: 10.1042/bj1860515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pfitzner J. Uber das Elektronentransportsystem bei Hydrogenomonas eutropha Stamm H 16. Zentralbl Bakteriol Orig A. 1972 May;220(1):396–401. [PubMed] [Google Scholar]
  21. Poole R. K., Haddock B. A. Dibromothymoquinone : an inhibitor of aerobic electron transport at the level of ubiquinone in Escherichia coli. FEBS Lett. 1975 Mar 15;52(1):13–16. doi: 10.1016/0014-5793(75)80626-0. [DOI] [PubMed] [Google Scholar]
  22. Tetley R. M., Bishop N. I. The differential action of metronidazole on nitrogen fixation, hydrogen metabolism, photosynthesis and respiration in Anabaena and Scenedesmus. Biochim Biophys Acta. 1979 Apr 11;546(1):43–53. doi: 10.1016/0005-2728(79)90168-3. [DOI] [PubMed] [Google Scholar]
  23. Veeger C., Laane C., Scherings G., van Zeeland Wolbers L. Membrane energization in relation with nitrogen fixation in Azotobacter vinelandii and Rhizobium leguminosarum bacteroids. Biochimie. 1978;60(3):237–243. doi: 10.1016/s0300-9084(78)80820-7. [DOI] [PubMed] [Google Scholar]
  24. Walker C. C., Yates M. G. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. Biochimie. 1978;60(3):225–231. doi: 10.1016/s0300-9084(78)80818-9. [DOI] [PubMed] [Google Scholar]
  25. Yagi T., Honya M., Tamiya N. Purification and properties of hydrogenases of different origins. Biochim Biophys Acta. 1968 Apr 2;153(3):699–705. doi: 10.1016/0005-2728(68)90197-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES