Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Mar;149(3):1013–1020. doi: 10.1128/jb.149.3.1013-1020.1982

Respiration-dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidations.

T C Hollocher, S Kumar, D J Nicholas
PMCID: PMC216490  PMID: 6277846

Abstract

Oxygen pulse experiments were carried out with the nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis and with spheroplasts and everted vesicles prepared from Nitrobacter agilis. In addition to thiocyanate, the salting-in anions perchlorate and trichloroacetate proved to be permeant and effective in allowing respiration-dependent proton translocation with Nitrosomonas europaea. Valinomycin-K+, however, was generally ineffective in this respect with Nitrosomonas europaea. The observed leads to H+/O ratio for ammonium ion oxidation by Nitrosomonas europaea was 3.4; that for hydroxylamine and hydrazine cation oxidation was 4.4. These values, when corrected for production of stoichiometric protons and for the fact that the first step in ammonium ion oxidation (hydroxylamine production) is mediated by a monooxygenase, give effective leads to H+/O ratios of about 4 for these three substrates. This value compares favorably with those obtained with other aerobes. No convincing evidence was obtained for operation of a respiratory proton pump in Nitrobacter agilis during nitrite oxidation. Implications of this unexpected result are discussed.

Full text

PDF
1013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEEM M. I., ALEXANDER M. Cell-free nitrification by Nitrobacter. J Bacteriol. 1958 Nov;76(5):510–514. doi: 10.1128/jb.76.5.510-514.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aleem M. I., Nason A. PHOSPHORYLATION COUPLED TO NITRITE OXIDATION BY PARTICLES FROM THE CHEMOAUTOTROPH, NITROBACTER AGILIS. Proc Natl Acad Sci U S A. 1960 Jun;46(6):763–769. doi: 10.1073/pnas.46.6.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aleem M. I. Path of carbon and assimilatory power in chemosynthetic bacteria. I. Nitrobacter agilis. Biochim Biophys Acta. 1965 Aug 24;107(1):14–28. doi: 10.1016/0304-4165(65)90384-3. [DOI] [PubMed] [Google Scholar]
  4. BUTT W. D., LEES H. Nitrite oxidation by Nitrobacter in the presence of certain nitrophenols. Nature. 1960 Oct 8;188:147–148. doi: 10.1038/188147b0. [DOI] [PubMed] [Google Scholar]
  5. Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cobley J. G. Energy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the protonmotive force. Biochem J. 1976 Jun 15;156(3):481–491. doi: 10.1042/bj1560481c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cobley J. G. Reduction of cytochromes by nitrite in electron-transport particles from Nitrobacter winogradskyi: proposal of a mechanism for H+ translocation. Biochem J. 1976 Jun 15;156(3):493–498. doi: 10.1042/bj1560493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drozd J. W. Energy coupling and respiration in Nitrosomonas europaea. Arch Microbiol. 1976 Nov 2;110(23):257–262. doi: 10.1007/BF00690236. [DOI] [PubMed] [Google Scholar]
  9. Dua R. D., Bhandari B., Nicholas D. J. Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea. FEBS Lett. 1979 Oct 15;106(2):401–404. doi: 10.1016/0014-5793(79)80541-4. [DOI] [PubMed] [Google Scholar]
  10. GOOD N. E. Activation of the Hill reaction by amines. Biochim Biophys Acta. 1960 Jun 3;40:502–517. doi: 10.1016/0006-3002(60)91391-3. [DOI] [PubMed] [Google Scholar]
  11. Garland P. B., Downie J. A., Haddock B. A. Proton translocation and the respiratory nitrate reductase of Escherichia coli. Biochem J. 1975 Dec;152(3):547–559. doi: 10.1042/bj1520547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinkle P. C., Yu M. L. The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation. J Biol Chem. 1979 Apr 10;254(7):2450–2455. [PubMed] [Google Scholar]
  13. Hollocher T. C., Tate M. E., Nicholas D. J. Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem. 1981 Nov 10;256(21):10834–10836. [PubMed] [Google Scholar]
  14. KIESOW L. ON THE ASSIMILATION OF ENERGY FROM INORGANIC SOURCES IN AUTOTROPHIC FORMS OF LIFE. Proc Natl Acad Sci U S A. 1964 Oct;52:980–988. doi: 10.1073/pnas.52.4.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelly D. P. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Annu Rev Microbiol. 1971;25:177–210. doi: 10.1146/annurev.mi.25.100171.001141. [DOI] [PubMed] [Google Scholar]
  16. Kristjansson J. K., Walter B., Hollocher T. C. Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria. Biochemistry. 1978 Nov 14;17(23):5014–5019. doi: 10.1021/bi00616a024. [DOI] [PubMed] [Google Scholar]
  17. Krogmann D. W., Jagendorf A. T., Avron M. Uncouplers of Spinach Chloroplast Photosynthetic Phosphorylation. Plant Physiol. 1959 May;34(3):272–277. doi: 10.1104/pp.34.3.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NICHOLAS D. J. THE METABOLISM OF INORGANIC NITROGEN AND ITS COMPOUNDS IN MICRO-ORGANISMS. Biol Rev Camb Philos Soc. 1963 Nov;38:530–568. doi: 10.1111/j.1469-185x.1963.tb00792.x. [DOI] [PubMed] [Google Scholar]
  19. Peck H. D., Jr Energy-coupling mechanisms in chemolithotrophic bacteria. Annu Rev Microbiol. 1968;22:489–518. doi: 10.1146/annurev.mi.22.100168.002421. [DOI] [PubMed] [Google Scholar]
  20. Ritchie G. A., Nicholas D. J. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem J. 1972 Mar;126(5):1181–1191. doi: 10.1042/bj1261181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scholes P., Mitchell P. Acid-base titration across the plasma membrane of Micrococcus denitrificans: factors affecting the effective proton conductance and the respiratory rate. J Bioenerg. 1970 Jun;1(1):61–72. doi: 10.1007/BF01516089. [DOI] [PubMed] [Google Scholar]
  22. Scholes P., Mitchell P. Respiration-driven proton translocation in Micrococcus denitrificans. J Bioenerg. 1971 Sep;1(3):309–323. doi: 10.1007/BF01516290. [DOI] [PubMed] [Google Scholar]
  23. Sone N., Yoshida M., Hirata H., Kagawa Y. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium. J Biol Chem. 1977 May 10;252(9):2956–2960. [PubMed] [Google Scholar]
  24. Suzuki I. Mechanisms of inorganic oxidation and energy coupling. Annu Rev Microbiol. 1974;28(0):85–101. doi: 10.1146/annurev.mi.28.100174.000505. [DOI] [PubMed] [Google Scholar]
  25. Wallace W., Knowles S. E., Nicholas D. J. Intermediary metabolism of carbon compounds by nitrifying bacteria. Arch Mikrobiol. 1970;70(1):26–42. doi: 10.1007/BF00691058. [DOI] [PubMed] [Google Scholar]
  26. Wallace W., Nicholas D. J. The biochemistry of nitrifying microorganisms. Biol Rev Camb Philos Soc. 1969 Jul;44(3):359–391. doi: 10.1111/j.1469-185x.1969.tb01216.x. [DOI] [PubMed] [Google Scholar]
  27. Walter B., Sidransky E., Kristjansson J. K., Hollocher T. C. Inhibition of denitrification by uncouplers of oxidative phosphorylation. Biochemistry. 1978 Jul 25;17(15):3039–3045. doi: 10.1021/bi00608a015. [DOI] [PubMed] [Google Scholar]
  28. Wilson D. M., Alderette J. F., Maloney P. C., Wilson T. H. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli. J Bacteriol. 1976 Apr;126(1):327–337. doi: 10.1128/jb.126.1.327-337.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES