Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Feb;149(2):488–493. doi: 10.1128/jb.149.2.488-493.1982

Alterations in gene expression during heat shock of Achlya ambisexualis.

D I Gwynne, B P Brandhorst
PMCID: PMC216532  PMID: 7056694

Abstract

When exponentially growing cultures of Achlya ambisexualis strain E87 were raised from their normal growth temperature of 30 degrees C to 35 degrees C, the rates of synthesis of a small number of proteins were dramatically increased. The most predominant proteins synthesized in response to heat shock had molecular weights of 70,000 and 78,000, and their increased synthesis was detected as early as 10 min after the shift to 35 degrees C. Changes in the populations of translatable messenger RNAs during heat shock showed that the levels of the mRNA's for all the major induced proteins correlated very closely with the alterations in the in vivo patterns, suggesting a transcriptional level of control of their synthesis. When after a period of heat shock (60 min) the cultures were shifted back to 30 degrees C, recovery of the preshock patterns of protein synthesis was attained after several hours. Different proteins show temporally distinct patterns of recovery. During recovery the levels of translatable mRNA's for the induced proteins also correlated closely with the patterns of in vivo protein synthesis.

Full text

PDF
488

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashburner M., Bonner J. J. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241–254. doi: 10.1016/0092-8674(79)90150-8. [DOI] [PubMed] [Google Scholar]
  2. Fink K., Zeuthen E. Heat shock proteins in Tetrahymena studied under growth conditions. Exp Cell Res. 1980 Jul;128(1):23–30. doi: 10.1016/0014-4827(80)90382-1. [DOI] [PubMed] [Google Scholar]
  3. Francis D., Lin L. Heat shock response in a cellular slime mold, Polysphondylium pallidum. Dev Biol. 1980 Sep;79(1):238–242. doi: 10.1016/0012-1606(80)90087-1. [DOI] [PubMed] [Google Scholar]
  4. Giudice G., Roccheri M. C., di Bernardo G. Synthesis of "heat shock" proteins in sea urchin embryos. Cell Biol Int Rep. 1980 Jan;4(1):69–74. doi: 10.1016/0309-1651(80)90011-9. [DOI] [PubMed] [Google Scholar]
  5. Griffin D. H., Breuker C. Ribonucleic acid synthesis during the differentiation of sporangia in the water mold Achlya. J Bacteriol. 1969 May;98(2):689–696. doi: 10.1128/jb.98.2.689-696.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hereford L. M., Rosbash M. Number and distribution of polyadenylated RNA sequences in yeast. Cell. 1977 Mar;10(3):453–462. doi: 10.1016/0092-8674(77)90032-0. [DOI] [PubMed] [Google Scholar]
  7. Hudspeth M. E., Timberlake W. E., Goldberg R. B. DNA sequence organization in the water mold Achlya. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4332–4336. doi: 10.1073/pnas.74.10.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kelley P. M., Schlesinger M. J. The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell. 1978 Dec;15(4):1277–1286. doi: 10.1016/0092-8674(78)90053-3. [DOI] [PubMed] [Google Scholar]
  9. Krumlauf R., Marzluf G. A. Characterization of the sequence complexity and organization of the Neurospora crassa genome. Biochemistry. 1979 Aug 21;18(17):3705–3713. doi: 10.1021/bi00584a011. [DOI] [PubMed] [Google Scholar]
  10. Krüger C., Benecke B. J. In vitro translation of Drosophila heat-shock and non--heat-shock mRNAs in heterologous and homologous cell-free systems. Cell. 1981 Feb;23(2):595–603. doi: 10.1016/0092-8674(81)90155-0. [DOI] [PubMed] [Google Scholar]
  11. Loomis W. F., Wheeler S. Heat shock response of Dictyostelium. Dev Biol. 1980 Oct;79(2):399–408. doi: 10.1016/0012-1606(80)90125-6. [DOI] [PubMed] [Google Scholar]
  12. Lovett J. S., Leaver C. J. High-molecular-weight artifacts in RNA extracted from Blastocladiella at elevated temperatures. Biochim Biophys Acta. 1969 Dec 16;195(2):319–327. doi: 10.1016/0005-2787(69)90639-x. [DOI] [PubMed] [Google Scholar]
  13. McAlister L., Finkelstein D. B. Alterations in translatable ribonucleic acid after heat shock of Saccharomyces cerevisiae. J Bacteriol. 1980 Aug;143(2):603–612. doi: 10.1128/jb.143.2.603-612.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McKenzie S. L., Henikoff S., Meselson M. Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1117–1121. doi: 10.1073/pnas.72.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mirault M. E., Goldschmidt-Clermont M., Moran L., Arrigo A. P., Tissières A. The effect of heat shock on gene expression in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):819–827. doi: 10.1101/sqb.1978.042.01.082. [DOI] [PubMed] [Google Scholar]
  16. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  17. Spradling A., Pardue M. L., Penman S. Messenger RNA in heat-shocked Drosophila cells. J Mol Biol. 1977 Feb 5;109(4):559–587. doi: 10.1016/s0022-2836(77)80091-0. [DOI] [PubMed] [Google Scholar]
  18. Spradling A., Penman S., Pardue M. L. Analysis of drosophila mRNA by in situ hybridization: sequences transcribed in normal and heat shocked cultured cells. Cell. 1975 Apr;4(4):395–404. doi: 10.1016/0092-8674(75)90160-9. [DOI] [PubMed] [Google Scholar]
  19. Storti R. V., Scott M. P., Rich A., Pardue M. L. Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell. 1980 Dec;22(3):825–834. doi: 10.1016/0092-8674(80)90559-0. [DOI] [PubMed] [Google Scholar]
  20. Velazquez J. M., DiDomenico B. J., Lindquist S. Intracellular localization of heat shock proteins in Drosophila. Cell. 1980 Jul;20(3):679–689. doi: 10.1016/0092-8674(80)90314-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES