Abstract
Strains of Bacillus subtilis that were resistant to repression of pyrimidine nucleotide biosynthetic enzymes were selected by isolating spontaneous uracil-tolerant derivatives of a uracil-sensitive strain, which lacks arginine-repressible carbamyl phosphate synthetase. The relative content of all six enzymes of uridylic acid biosynthesis de novo in these strains was in a constant ratio over a 10-fold range of derepression, which indicates that synthesis of these enzymes is coordinately regulated.
Full text
PDF![775](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d0/216572/67900c33af71/jbacter00261-0371.png)
![776](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d0/216572/43ae04d77d08/jbacter00261-0372.png)
![777](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d0/216572/00c432f984ee/jbacter00261-0373.png)
![778](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d0/216572/67f443fd106e/jbacter00261-0374.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fox R. M. A simple incubation flask for 14CO2 collection. Anal Biochem. 1971 Jun;41(2):578–580. doi: 10.1016/0003-2697(71)90180-1. [DOI] [PubMed] [Google Scholar]
- Ingraham J. L., Neuhard J. Cold-sensitive mutants of Salmonella typhimurium defective in uridine monophosphate kinase (pyrH). J Biol Chem. 1972 Oct 10;247(19):6259–6265. [PubMed] [Google Scholar]
- Justesen J., Neuhard J. pyrR identical to pyrH in Salmonella typhimurium: control of expression of the pyr genes. J Bacteriol. 1975 Sep;123(3):851–854. doi: 10.1128/jb.123.3.851-854.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurizi M. R., Switzer R. L. Aspartate transcarbamylase synthesis ceases prior to inactivation of the enzyme in Bacillus subtilis. J Bacteriol. 1978 Sep;135(3):943–951. doi: 10.1128/jb.135.3.943-951.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulus T. J., Switzer R. L. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):82–91. doi: 10.1128/jb.137.1.82-91.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulus T. J., Switzer R. L. Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation. J Bacteriol. 1979 Dec;140(3):769–773. doi: 10.1128/jb.140.3.769-773.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potvin B. W., Kelleher R. J., Jr, Gooder H. Pyrimidine biosynthetic pathway of Baccillus subtilis. J Bacteriol. 1975 Aug;123(2):604–615. doi: 10.1128/jb.123.2.604-615.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prescott L. M., Jones M. E. Modified methods for the determination of carbamyl aspartate. Anal Biochem. 1969 Dec;32(3):408–419. doi: 10.1016/s0003-2697(69)80008-4. [DOI] [PubMed] [Google Scholar]
- Schwartz M., Neuhard J. Control of expression of the pyr genes in Salmonella typhimurium: effects of variations in uridine and cytidine nucleotide pools. J Bacteriol. 1975 Mar;121(3):814–822. doi: 10.1128/jb.121.3.814-822.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waindle L. M., Switzer R. L. Inactivation of aspartic transcarbamylase in sporulating Bacillus subtilis: demonstration of a requirement for metabolic energy. J Bacteriol. 1973 May;114(2):517–527. doi: 10.1128/jb.114.2.517-527.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]