Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Jan;149(1):191–197. doi: 10.1128/jb.149.1.191-197.1982

Effect of catabolite repression on the mer operon.

A O Summers, L Knight-Olliff, C Slater
PMCID: PMC216609  PMID: 6274843

Abstract

The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderman E. M., Dills S. S., Melton T., Dobrogosz W. J. Cyclic adenosine 3',5'-monophosphate regulation of the bacteriophage T6/colicin K receptor in Escherichia coli. J Bacteriol. 1979 Nov;140(2):369–376. doi: 10.1128/jb.140.2.369-376.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alper M. D., Ames B. N. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol. 1978 Jan;133(1):149–157. doi: 10.1128/jb.133.1.149-157.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aono R., Yamasaki M., Tamura G. Changes in composition of envelope proteins in adenylate cyclase- or cyclic AMP receptor protein-deficient mutants of Escherichia coli. J Bacteriol. 1978 Nov;136(2):812–814. doi: 10.1128/jb.136.2.812-814.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brickman E., Soll L., Beckwith J. Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase. J Bacteriol. 1973 Nov;116(2):582–587. doi: 10.1128/jb.116.2.582-587.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broman R. L., Dobrogosz W. J. Stimulation of cytochrome synthesis in Escherichia coli by cyclic AMP. Arch Biochem Biophys. 1974 Jun;162(2):595–601. doi: 10.1016/0003-9861(74)90220-3. [DOI] [PubMed] [Google Scholar]
  7. Dallas W. S., Tseng Y., Dobrogosz W. J. Regulation of membrane functions and fatty acid composition in Escherichia coli by cyclic AMP receptor protein. Arch Biochem Biophys. 1976 Jul;175(1):295–302. doi: 10.1016/0003-9861(76)90511-7. [DOI] [PubMed] [Google Scholar]
  8. De Crombrugghe B., Chen B., Anderson W., Nissley P., Gottesman M., Pastan I., Perlman R. Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. Nat New Biol. 1971 Jun 2;231(22):139–142. doi: 10.1038/newbio231139a0. [DOI] [PubMed] [Google Scholar]
  9. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dills S. E., Dobrogosz W. J. Cyclic adenosine 3',5'-monophosphate regulation of membrane energetics in Escherichia coli. J Bacteriol. 1977 Sep;131(3):854–865. doi: 10.1128/jb.131.3.854-865.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dottin R. P., Shiner L. S., Hoar D. I. Adenosine 3',5'-cyclic monophosphate regulation of chloramphenicol acetyltransferase synthesis in vitro from P1CM DNA. Virology. 1973 Feb;51(2):509–511. doi: 10.1016/0042-6822(73)90453-4. [DOI] [PubMed] [Google Scholar]
  12. Foster T. J., Nakahara H., Weiss A. A., Silver S. Transposon A-generated mutations in the mercuric resistance genes of plasmid R100-1. J Bacteriol. 1979 Oct;140(1):167–181. doi: 10.1128/jb.140.1.167-181.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harwood C. R., Meynell E. Cyclic AMP and the production of sex pili by E. coli K-12 carrying derepressed sex factors. Nature. 1975 Apr 17;254(5501):628–660. doi: 10.1038/254628a0. [DOI] [PubMed] [Google Scholar]
  14. Harwood J. H., Smith D. H. Resistance factor-mediated streptomycin resistance. J Bacteriol. 1969 Mar;97(3):1262–1271. doi: 10.1128/jb.97.3.1262-1271.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harwood J., Smith D. H. Catabolite repression of chloramphenicol acetyl transferase synthesis in E. coli K12. Biochem Biophys Res Commun. 1971 Jan 8;42(1):57–62. doi: 10.1016/0006-291x(71)90361-5. [DOI] [PubMed] [Google Scholar]
  16. Katz L., Kingsbury D. T., Helinski D. R. Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol. 1973 May;114(2):577–591. doi: 10.1128/jb.114.2.577-591.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martínez-Cadena M. G., Guzman-Verduzco L. M., Stieglitz H., Kupersztoch-Portnoy Y. M. Catabolite repression of Escherichia coli heat-stable enterotoxin activity. J Bacteriol. 1981 Feb;145(2):722–728. doi: 10.1128/jb.145.2.722-728.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakahara H., Silver S., Miki T., Rownd R. H. Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1. J Bacteriol. 1979 Oct;140(1):161–166. doi: 10.1128/jb.140.1.161-166.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Novick R. P., Clowes R. C., Cohen S. N., Curtiss R., 3rd, Datta N., Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev. 1976 Mar;40(1):168–189. doi: 10.1128/br.40.1.168-189.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Peterkofsky A. Cyclic nucleotides in bacteria. Adv Cyclic Nucleotide Res. 1976;7:1–48. [PubMed] [Google Scholar]
  23. Schottel J. L. The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J Biol Chem. 1978 Jun 25;253(12):4341–4349. [PubMed] [Google Scholar]
  24. Summers A. O., Kight-Olliff L. Tn1 generated mutants in the mercuric ion reductase of the Inc P plasmid, R702. Mol Gen Genet. 1980;180(1):91–97. doi: 10.1007/BF00267356. [DOI] [PubMed] [Google Scholar]
  25. Summers A. O., Silver S. Microbial transformations of metals. Annu Rev Microbiol. 1978;32:637–672. doi: 10.1146/annurev.mi.32.100178.003225. [DOI] [PubMed] [Google Scholar]
  26. Summers A. O., Sugarman L. I. Cell-free mercury(II)-reducing activity in a plasmid-bearing strain of Escherichia coli. J Bacteriol. 1974 Jul;119(1):242–249. doi: 10.1128/jb.119.1.242-249.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Swenson P. A. Antipain lethality to Escherichia coli: dependence upon cyclic adenosine 3',5'-monophosphate and its receptor protein. J Bacteriol. 1979 Aug;139(2):690–693. doi: 10.1128/jb.139.2.690-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Swenson P. A., Schenley R. L., Joshi J. G. Role of cyclic adenosine 3',5'-monophosphate on cessation of respiration in ultraviolet-irradiated Escherichia coli. J Bacteriol. 1977 Aug;131(2):707–709. doi: 10.1128/jb.131.2.707-709.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss A. A., Murphy S. D., Silver S. Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus. J Bacteriol. 1977 Oct;132(1):197–208. doi: 10.1128/jb.132.1.197-208.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Willetts N. The genetics of transmissible plasmids. Annu Rev Genet. 1972;6:257–268. doi: 10.1146/annurev.ge.06.120172.001353. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES