Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Nov;140(2):333–341. doi: 10.1128/jb.140.2.333-341.1979

Deoxyribonucleic Acid Synthesis in Saccharomyces cerevisiae Cells Permeabilized with Ether

Wolfgang Oertel 1,, Mehran Goulian 1
PMCID: PMC216654  PMID: 387730

Abstract

Cells of Saccharomyces cerevisiae permeabilized by treatment with ether take up and incorporate exogenous deoxynucleoside triphosphate into deoxyribonucleic acid (DNA). With ρ+ strains, more than 95% of the product was mitochondrial DNA (mtDNA). This report characterizes ether-permeabilized yeast cells and describes studies on the mechanism of mtDNA synthesis with this system. The initial rate of in vitro mtDNA synthesis with one strain (X2180-1Bρ+) was close to the rate of mtDNA replication in vivo. The extent of synthesis after 45 min was sufficient for the duplication of about 25% of the total mtDNA in the cells. The incorporated radioactivity resulting from in vitro DNA synthesis appeared in fragments that were an average of 30% mitochondrial genome size. Density-labeling experiments showed that continuous strands of at least 7 kilobases after denaturation, and up to 25 kilobase pairs before denaturation, were synthesized by this system. Pulse-chase experiments demonstrated that a large proportion of DNA product after short labeling times appeared in 0.25-kilobase fragments (after denaturation), which served as precursors of high-molecular-weight DNA. It is not yet clear whether the short pieces participate in a mechanism of discontinuous replication similar to that of bacterial and animal cell chromosomal DNA or whether they are related to the rapidly turning over, short initiation sequence of animal cell mtDNA. In ρ0 strains, which lack mtDNA, the initial rate of nuclear DNA synthesis in vitro was 1 to 2% of the average in vivo rate. With temperature-sensitive DNA replication mutants (cdc8), the synthesis of nuclear DNA was temperature sensitive in vitro as well, and in vitro DNA synthesis was blocked in an initiation mutant (cdc7) that was shifted to the restrictive temperature before the ether treatment.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks G. R. Mitochondrial DNA synthesis in permeable cells. Nat New Biol. 1973 Oct 17;245(146):196–199. doi: 10.1038/newbio245196a0. [DOI] [PubMed] [Google Scholar]
  2. Bernardi G., Piperno G., Fonty G. The mitochondrial genome of wild-type yeast cells. I. Preparation and heterogeneity of mitochondrial DNA. J Mol Biol. 1972 Mar 28;65(2):173–189. doi: 10.1016/0022-2836(72)90275-6. [DOI] [PubMed] [Google Scholar]
  3. Blamire J., Cryer D. R., Finkelstein D. B., Marmur J. Sedimentation properties of yeast nuclear and mitochondrial DNA. J Mol Biol. 1972 Jun 14;67(1):11–24. doi: 10.1016/0022-2836(72)90382-8. [DOI] [PubMed] [Google Scholar]
  4. Bogenhagen D., Clayton D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: kinetics of synthesis and turnover of the initiation sequence. J Mol Biol. 1978 Feb 15;119(1):49–68. doi: 10.1016/0022-2836(78)90269-3. [DOI] [PubMed] [Google Scholar]
  5. Cleaver J. E. Repair replication of mammalian cell DNA: effects of compounds that inhibit DNA synthesis or dark repair. Radiat Res. 1969 Feb;37(2):334–348. [PubMed] [Google Scholar]
  6. Cramer J. H., Bhargava M. M., Halvorson H. O. Isolation and characterization of DNA of Saccharomyces cerevisiae. J Mol Biol. 1972 Oct 28;71(1):11–20. doi: 10.1016/0022-2836(72)90396-8. [DOI] [PubMed] [Google Scholar]
  7. Dawes I. W., Hardie I. D. Selective killing of vegetative cells in sporulated yeast cultures by exposure to diethyl ether. Mol Gen Genet. 1974;131(4):281–289. doi: 10.1007/BF00264859. [DOI] [PubMed] [Google Scholar]
  8. Duntze W., MacKay V., Manney T. R. Saccharomyces cerevisiae: a diffusible sex factor. Science. 1970 Jun 19;168(3938):1472–1473. doi: 10.1126/science.168.3938.1472. [DOI] [PubMed] [Google Scholar]
  9. Edenberg H. J., Anderson S., DePamphilis M. L. Involvement of DNA polymerase alpha in simian virus 40 DNA replication. J Biol Chem. 1978 May 10;253(9):3273–3280. [PubMed] [Google Scholar]
  10. Flory P. J., Jr Strandedness of newly synthesized short pieces of polyoma DNA from isolated nuclei. Nucleic Acids Res. 1977;4(5):1449–1464. doi: 10.1093/nar/4.5.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fraser J. M., Huberman J. A. In vitro HeLa cell DNA synthesis. II. Partial characterization of soluble factors stimulating nuclear dna synthesis. Biochim Biophys Acta. 1978 Sep 27;520(2):271–284. doi: 10.1016/0005-2787(78)90226-5. [DOI] [PubMed] [Google Scholar]
  12. Fäth W. W., Brendel M., Laskowski W., Lehmann-Brauns E. Economizing DNA-specific labelling by deoxythymidine-5'-monophosphate in Saccharomyces cerevisiae. Mol Gen Genet. 1974;132(4):335–345. doi: 10.1007/BF00268573. [DOI] [PubMed] [Google Scholar]
  13. Game J. C. Yeast cell-cycle mutant cdc21 is a temperature-sensitive thymidylate auxotroph. Mol Gen Genet. 1976 Aug 2;146(3):313–315. doi: 10.1007/BF00701257. [DOI] [PubMed] [Google Scholar]
  14. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  15. Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
  16. Hartwell L. H. Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J Mol Biol. 1971 Jul 14;59(1):183–194. doi: 10.1016/0022-2836(71)90420-7. [DOI] [PubMed] [Google Scholar]
  17. Hartwell L. H. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 1974 Jun;38(2):164–198. doi: 10.1128/br.38.2.164-198.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartwell L. H. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol. 1973 Sep;115(3):966–974. doi: 10.1128/jb.115.3.966-974.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hatzfeld J. DNA labelling and its assay in yeast. Biochim Biophys Acta. 1973 Feb 23;299(1):34–42. doi: 10.1016/0005-2787(73)90395-x. [DOI] [PubMed] [Google Scholar]
  20. Hereford L. M., Hartwell L. H. Defective DNA synthesis in permeabilized yeast mutants. Nat New Biol. 1971 Dec 8;234(49):171–172. doi: 10.1038/newbio234171a0. [DOI] [PubMed] [Google Scholar]
  21. Hunter T., Francke B., Bacheler L. In vitro polyoma DNA synthesis: asymmetry of short DNA chains. Cell. 1977 Dec;12(4):1021–1028. doi: 10.1016/0092-8674(77)90166-0. [DOI] [PubMed] [Google Scholar]
  22. Masker W. E., Hanawalt P. C. Selective inhibition of the semiconservative mode of DNA replication by araCTP. Biochim Biophys Acta. 1974 Mar 27;340(3):229–236. doi: 10.1016/0005-2787(74)90268-8. [DOI] [PubMed] [Google Scholar]
  23. Mattick J. S., Hall R. M. Replicative deoxyribonucleic acid synthesis in isolated mitochondria from Saccharomyces cerevisiae. J Bacteriol. 1977 Jun;130(3):973–982. doi: 10.1128/jb.130.3.973-982.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oertel W., Goulian M. Deoxyribonucleic acid synthesis in permeabilized spheroplasts of Saccharomyces cerevisiae. J Bacteriol. 1977 Oct;132(1):233–246. doi: 10.1128/jb.132.1.233-246.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oertel W., Kollek R., Beck E., Goebel W. The nucleotide sequence of a DNA fragment from the replication origin of the antibiotic resistance factor R1drd19. Mol Gen Genet. 1979 Mar 27;171(3):277–285. doi: 10.1007/BF00267582. [DOI] [PubMed] [Google Scholar]
  26. Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598–605. doi: 10.1073/pnas.59.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Otto B., Reichard P. Replication of polyoma DNA in isolated nuclei. V. Complementation of in vitro DNA replication. J Virol. 1975 Feb;15(2):259–267. doi: 10.1128/jvi.15.2.259-267.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Perlman D., Huberman J. A. Asymmetric Okazaki piece synthesis during replication of simian virus 40 DNA in vivo. Cell. 1977 Dec;12(4):1029–1043. doi: 10.1016/0092-8674(77)90167-2. [DOI] [PubMed] [Google Scholar]
  29. Robberson D. L., Clayton D. A. Pulse-labeled components in the replication of mitochondrial deoxyribonucleic acid. J Biol Chem. 1973 Jun 25;248(12):4512–4514. [PubMed] [Google Scholar]
  30. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  31. Schaller H. Structure of the DNA of bacteriophage fd. I. Absence of non-phosphodiester linkages. J Mol Biol. 1969 Sep 28;44(3):435–444. doi: 10.1016/0022-2836(69)90371-4. [DOI] [PubMed] [Google Scholar]
  32. Tseng B. Y., Goulian M. DNA synthesis in human lymphocyts: intermediates in DNA synthesis, in vitro and in vivo. J Mol Biol. 1975 Dec 5;99(2):317–337. doi: 10.1016/s0022-2836(75)80149-5. [DOI] [PubMed] [Google Scholar]
  33. Vosberg H. P., Hoffmann-Berling H. DNA synthesis in nucleotide-permeable Escherichia coli cells. I. Preparation and properties of ether-treated cells. J Mol Biol. 1971 Jun 28;58(3):739–753. doi: 10.1016/0022-2836(71)90037-4. [DOI] [PubMed] [Google Scholar]
  34. Waqar M. A., Evans M. J., Huberman J. A. Effect of 2',3'-dideoxythymidine-5'-triphosphate on HeLa cell in vitro DNA synthesis: evidence that DNA polymerase alpha is the only polymerase required for cellular DNA replication. Nucleic Acids Res. 1978 Jun;5(6):1933–1946. doi: 10.1093/nar/5.6.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wickner R. B. Mutants of Saccharomyces cerevisiae that incorporate deoxythymidine-5'-monophosphate into deoxyribonucleic acid in vivo. J Bacteriol. 1974 Jan;117(1):252–260. doi: 10.1128/jb.117.1.252-260.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williamson D. H., Fennell D. J. Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Mol Gen Genet. 1974;131(3):193–207. doi: 10.1007/BF00267959. [DOI] [PubMed] [Google Scholar]
  37. Wintersberger U., Hirsch J., Fink A. M. Studies on nuclear and mitochondrial DNA-replication in a temperature-sensitive mutant of Saccharomyces cerevisiae. Mol Gen Genet. 1974;131(4):291–299. doi: 10.1007/BF00264860. [DOI] [PubMed] [Google Scholar]
  38. Yee W. S., Decker R. W., Brunk C. F. Incorporation of tritium-labeled thymidine monophosphate into nuclear DNA by permeabilized yeast cells. Biochim Biophys Acta. 1976 Nov 1;447(4):385–390. doi: 10.1016/0005-2787(76)90075-7. [DOI] [PubMed] [Google Scholar]
  39. Zeman L. J., Lusena C. V. In vivo and in vitro synthesis of yeast mitochondrial DNA. Methods Cell Biol. 1975;12:273–283. doi: 10.1016/s0091-679x(08)60960-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES