Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Nov;140(2):436–444. doi: 10.1128/jb.140.2.436-444.1979

Multiple, independent components of ultraviolet radiation mutagenesis in Escherichia coli K-12 uvrB5.

K C Smith, N J Sargentini
PMCID: PMC216667  PMID: 387735

Abstract

Reversion systems involving the lacZ53(amber) and leuB19)missense) mutations were developed to study the mutant frequency response of Escherichia coli K-12 uvrB5 (SR250) to ultraviolet radiation (254 nm). A one-hit mutant frequency response was discernible at ultraviolet radiation fluences below approximately 0.5 J m-2. At higher fluences the overall mutant frequency response could be resolved into one-hit and two-hit components. A new interpretation of the published data on E. coli K-12 indicates that SR250 is not unique in this respect. In addition, the Lac reversion system showed enhanced mutagenesis after ultraviolet radiation fluences of approximately 1 to 3 J m-2, whereas the Leu reversion system did not. We conclude that the complex ultraviolet radiation mutant frequency response curves for E. coli K-12 uvrB5 were the result of three independent mutagenic processes for Lac reversion and two for Leu reversion.

Full text

PDF
436

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwood-Smith M. J., Bridges B. A. Ultraviolet mutagenesis in Escherichia coli at low temperatures. Mutat Res. 1966 Apr;3(2):135–144. doi: 10.1016/0027-5107(66)90027-3. [DOI] [PubMed] [Google Scholar]
  2. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barfknecht T. R., Smith K. C. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of escherichia coli K-12 W3110. Photochem Photobiol. 1977 Dec;26(6):643–645. doi: 10.1111/j.1751-1097.1977.tb07544.x. [DOI] [PubMed] [Google Scholar]
  4. Bridges B. A., Dennis R. E., Munson R. J. Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics. 1967 Dec;57(4):897–908. doi: 10.1093/genetics/57.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bridges B. A., Dennis R. E., Munson R. J. Mutagenesis in Escherichia coli. V. Attempted interconversion of ochre and amber suppressors and mutational instability due to an ochre suppressor. Mol Gen Genet. 1970;107(4):351–360. doi: 10.1007/BF00441196. [DOI] [PubMed] [Google Scholar]
  6. Bridges B. A., Mottershead R. P. Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Mol Gen Genet. 1976 Feb 27;144(1):53–58. doi: 10.1007/BF00277304. [DOI] [PubMed] [Google Scholar]
  7. Bridges B. A., Mottershead R. P. Mutagenic DNA repair in Escherichia coli. VII. Constitutive and inducible manifestations. Mutat Res. 1978 Nov;52(2):151–159. doi: 10.1016/0027-5107(78)90137-9. [DOI] [PubMed] [Google Scholar]
  8. Bridges B. A. Simple bacterial systems for detecting mutagenic agents. Lab Pract. 1972 Jun;21(6):413-6, 419. [PubMed] [Google Scholar]
  9. CASTELLANI A., JAGGER J., SETLOW R. B. OVERLAP OF PHOTOREACTIVATION AND LIQUID HOLDING RECOVERY IN ESCHERICHIA COLI B. Science. 1964 Mar 13;143(3611):1170–1171. doi: 10.1126/science.143.3611.1170. [DOI] [PubMed] [Google Scholar]
  10. Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. doi: 10.1016/0042-6822(71)90321-7. [DOI] [PubMed] [Google Scholar]
  11. Doubleday O. P., Bridges B. A., Green M. H. Mutagenic DNA repair in Escherichia coli. II. Factors affecting loss of photoreversibility of UV induced mutations. Mol Gen Genet. 1975 Oct 3;140(3):221–230. doi: 10.1007/BF00334267. [DOI] [PubMed] [Google Scholar]
  12. Doudney C O, Young C S. Ultraviolet Light Induced Mutation and Deoxyribonucleic Acid Replication in Bacteria. Genetics. 1962 Sep;47(9):1125–1138. doi: 10.1093/genetics/47.9.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doudney C. O. Complexity of the ultraviolet mutation frequency response curve in Escherichia coli B/r: SOS induction, one-lesion and two-lesion mutagenesis. J Bacteriol. 1976 Dec;128(3):815–826. doi: 10.1128/jb.128.3.815-826.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doudney C. O. Is DNA polymerase I necessary for most UV-induced mutation from tryptophan auxotrophy in Escherichia coli B/r WP2? Mutat Res. 1977 Oct;45(1):147–152. doi: 10.1016/0027-5107(77)90052-5. [DOI] [PubMed] [Google Scholar]
  15. Ganesan A. K., Smith K. C. Dark recovery processes in Escherichia coli irradiated with ultraviolet light. I. Effect of rec mutations on liquid holding recovery. J Bacteriol. 1968 Aug;96(2):365–373. doi: 10.1128/jb.96.2.365-373.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Green M. H., Rothwell M. A., Bridges B. A. Mutation to prototrophy in Escherichia coli K-12: effect of broth on UV-induced mutation in strain AB1157 and four excision-deficient mutants. Mutat Res. 1972 Nov;16(3):225–234. doi: 10.1016/0027-5107(72)90153-4. [DOI] [PubMed] [Google Scholar]
  17. Helling R. B. Selection of a mutant of Escherichia coli which has high mutation rates. J Bacteriol. 1968 Oct;96(4):975–980. doi: 10.1128/jb.96.4.975-980.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Helling R. B. The effect of arabinose-specific enzyme synthesis on recombination in the arabinose genes of Escherichia coli. Genetics. 1967 Nov;57(3):665–675. doi: 10.1093/genetics/57.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Helling R. B. Ultraviolet light-induced recombination. Biochem Biophys Res Commun. 1973 Dec 10;55(3):752–757. doi: 10.1016/0006-291x(73)91208-4. [DOI] [PubMed] [Google Scholar]
  20. Kato T., Rothman R. H., Clark A. J. Analysis of the role of recombination and repair in mutagenesis of Escherichia coli by UV irradiation. Genetics. 1977 Sep;87(1):1–18. doi: 10.1093/genetics/87.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kato T., Shinoura Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet. 1977 Nov 14;156(2):121–131. doi: 10.1007/BF00283484. [DOI] [PubMed] [Google Scholar]
  22. Pollard E. C., Person S., Rader M., Fluke D. J. Relation to ultraviolet light mutagenesis to a radiation-damage inducible system in Escherichia coli. Radiat Res. 1977 Dec;72(3):519–532. [PubMed] [Google Scholar]
  23. Sedgwick S. G. Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J Bacteriol. 1975 Jul;123(1):154–161. doi: 10.1128/jb.123.1.154-161.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sedgwick S. G. Inducible error-prone repair in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2753–2757. doi: 10.1073/pnas.72.7.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sedgwick S. G. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in UVR strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions. Mutat Res. 1976 Dec;41(2-3):185–200. doi: 10.1016/0027-5107(76)90091-9. [DOI] [PubMed] [Google Scholar]
  26. Smith K. C. Ultraviolet radiation-induced mutability of uvrD3 strains of Escherichia coli B/r and K-12: a problem in analyzing mutagenesis data. Photochem Photobiol. 1976 Nov;24(5):433–437. doi: 10.1111/j.1751-1097.1976.tb06850.x. [DOI] [PubMed] [Google Scholar]
  27. Van der Schueren E., Youngs D. A., Smith K. C. Sensitization of ultraviolet-irradiated Escherichia coli K-12 by different agars: inhibition of A rec and exr gene-dependent branch of the uvr gene-dependent excision-repair process. Photochem Photobiol. 1974 Jul;20(1):9–13. doi: 10.1111/j.1751-1097.1974.tb06541.x. [DOI] [PubMed] [Google Scholar]
  28. Witkin E. M. Persistence and decay of thermoinducible error-prone repair activity in nonfilamentous derivatives of tif-1, Escherichia coli B/r: the timing of some critical events in ultraviolet mutagenesis. Mol Gen Genet. 1975 Dec 29;142(2):87–103. doi: 10.1007/BF00266092. [DOI] [PubMed] [Google Scholar]
  29. Witkin E. M. Radiation-induced mutations and their repair. Science. 1966 Jun 3;152(3727):1345–1353. doi: 10.1126/science.152.3727.1345. [DOI] [PubMed] [Google Scholar]
  30. Witkin E. M. Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B-r: evidence that ultraviolet mutagenesis depends upon an inducible function. Proc Natl Acad Sci U S A. 1974 May;71(5):1930–1934. doi: 10.1073/pnas.71.5.1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Youngs D. A., Smith K. C. Evidence for the control by exrA and polA genes of two branches of the uvr gene-dependent excision repair pathway in Escherichia coli K-12. J Bacteriol. 1973 Oct;116(1):175–182. doi: 10.1128/jb.116.1.175-182.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Youngs D. A., Smith K. C. Genetic control of multiple pathways of post-replicational repair in uvrB strains of Escherichia coli K-12. J Bacteriol. 1976 Jan;125(1):102–110. doi: 10.1128/jb.125.1.102-110.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES