Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Nov;140(2):490–497. doi: 10.1128/jb.140.2.490-497.1979

Translational regulation of polysome formation during dormancy of Physarum polycephalum.

W R Jeffery
PMCID: PMC216673  PMID: 315405

Abstract

The translational activity of actively growing microplasmodia and dormant microsclerotia of Physarum polycephalum was investigated by analyzing the distribution of ribosomes in polysomes. Microplasmodial post-mitochondrial fractions contained substantial amounts of polysomes and ribosomal subunits but very few native monosomes. During the starvation period which preceded microsclerotium formation, polysome levels remained constant, whereas the subunit titer began to increase. During encystment ribosomal subunits continued to accumulate as the level of polysomes gradually decreased. Dormant microsclerotia contained a large surplus of stored ribosomal subunits but no detectable polysomes. However, incubation of microsclerotia with concentrations of cycloheximide sufficient to slow polypeptide elongation without affecting initiation caused the gradual reappearance of polysomes at the expense of the subunits. Under these conditions the percentage of subunits driven into polysomes reached values similar to those of actively growing microplasmodia. Microsclerotia returned to nutrient medium contained very low levels of polysomes during the lag period which preceded germination. These were formed with preexisting, stored messenger ribonucleic acid. During the germination period, polysome levels were markedly increased. This elevation was dependent on new ribonucleic acid transcription. It is concluded that dormant microsclerotia contain functional messenger ribonucleic acid and ribosomes which are subject to translational repression at the level of initiation.

Full text

PDF
490

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. S., Jeffery W. R. Poly(adenylic acid) degradation by two distinct processes in the cytoplasmic RNA of Physarum polycephalum. Biochemistry. 1978 Oct 17;17(21):4519–4524. doi: 10.1021/bi00614a025. [DOI] [PubMed] [Google Scholar]
  2. Baglioni C., Vesco C., Jacobs-Lorena M. The role of ribosomal subunits in mammalian cells. Cold Spring Harb Symp Quant Biol. 1969;34:555–565. doi: 10.1101/sqb.1969.034.01.063. [DOI] [PubMed] [Google Scholar]
  3. Brewer E. N. Polysome profiles, amino acid incorporation in vitro, and polysome reaggregation following disaggregation by heat shock through the mitotic cycle in Physarum polycephalum. Biochim Biophys Acta. 1972 Sep 14;277(3):639–645. doi: 10.1016/0005-2787(72)90108-6. [DOI] [PubMed] [Google Scholar]
  4. Chet I., Rusch H. P. RNA and protein synthesis during germination of spherules of Physarum polycephalum. Biochim Biophys Acta. 1970 Dec 14;224(2):620–622. doi: 10.1016/0005-2787(70)90595-2. [DOI] [PubMed] [Google Scholar]
  5. Cummins J. E., Brewer E. N., Rusch H. P. The effect of actidione on mitosis in the slime mold Physarum polycephalum. J Cell Biol. 1965 Nov;27(2):337–341. doi: 10.1083/jcb.27.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fan H., Penman S. Regulation of protein synthesis in mammalian cells. II. Inhibition of protein synthesis at the level of initiation during mitosis. J Mol Biol. 1970 Jun 28;50(3):655–670. doi: 10.1016/0022-2836(70)90091-4. [DOI] [PubMed] [Google Scholar]
  7. Fouquet H., Wick R., BOHME R., Sauer H. W. Effects of cordycepin on RNA sythesis in Physarum polycephalum. Arch Biochem Biophys. 1975 May;168(1):273–280. doi: 10.1016/0003-9861(75)90251-9. [DOI] [PubMed] [Google Scholar]
  8. Goodman E. M., Beck T. Metabolism during differentiation in the slime mold Physarum polycephalum. Can J Microbiol. 1974 Feb;20(2):107–111. doi: 10.1139/m74-017. [DOI] [PubMed] [Google Scholar]
  9. Goodman E. M., Rusch H. P. Ultrastructural changes during spherule formation in Physarum polycephalum. J Ultrastruct Res. 1970 Jan;30(1):172–183. doi: 10.1016/s0022-5320(70)90071-7. [DOI] [PubMed] [Google Scholar]
  10. Humphreys T. Efficiency of translation of messenger-RNA before and after fertilization in sea urchins. Dev Biol. 1969 Nov;20(5):435–458. doi: 10.1016/0012-1606(69)90025-6. [DOI] [PubMed] [Google Scholar]
  11. Jeffery W. R. Polyadenylation of maternal and newly-synthesized RNA during starfish oocyte maturation. Dev Biol. 1977 May;57(1):98–108. doi: 10.1016/0012-1606(77)90357-8. [DOI] [PubMed] [Google Scholar]
  12. Lee G. T., Engelhardt D. L. Peptide coding capacity of polysomal and non-polysomal messenger RNA during growth of animal cells. J Mol Biol. 1979 Apr 5;129(2):221–233. doi: 10.1016/0022-2836(79)90278-x. [DOI] [PubMed] [Google Scholar]
  13. Lee S. Y., Krsmanovic V., Brawerman G. Initiation of polysome formation in mouse sarcoma 180 ascites cells. Utilization of cytoplasmic messenger ribonucleic acid. Biochemistry. 1971 Mar 2;10(5):895–900. doi: 10.1021/bi00781a026. [DOI] [PubMed] [Google Scholar]
  14. Lodish H. F. Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem. 1971 Dec 10;246(23):7131–7138. [PubMed] [Google Scholar]
  15. MacKintosh F. R., Bell E. Regulation of protein synthesis in sea urchin eggs. J Mol Biol. 1969 May 14;41(3):365–380. doi: 10.1016/0022-2836(69)90282-4. [DOI] [PubMed] [Google Scholar]
  16. Mills D. Isolation of polyribosomes from yeast during sporulation and vegetative growth. Appl Microbiol. 1974 May;27(5):944–948. doi: 10.1128/am.27.5.944-948.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mirkes P. E. Polysomes and protein synthesis during development of Ilyanassa obsoleta. Exp Cell Res. 1972 Oct;74(2):503–508. doi: 10.1016/0014-4827(72)90407-7. [DOI] [PubMed] [Google Scholar]
  18. Orlowski M., Sypherd P. S. Regulation of translation rate during morphogenesis in the fungus Mucor. Biochemistry. 1978 Feb 21;17(4):569–575. doi: 10.1021/bi00597a002. [DOI] [PubMed] [Google Scholar]
  19. Plaut B. S., Turnock G. Coordination of macromolecular synthesis in the slime mould Physarum polycephalum. Mol Gen Genet. 1975;137(3):211–225. doi: 10.1007/BF00333017. [DOI] [PubMed] [Google Scholar]
  20. SIEGEL M. R., SISLER H. D. SITE OF ACTION OF CYCLOHEXIMIDE IN CELLS OF SACCHAROMYCES PASTORIANUS. I. EFFECT OF THE ANTIBIOTIC ON CELLULAR METABOLISM. Biochim Biophys Acta. 1964 May 18;87:70–82. doi: 10.1016/0926-6550(64)90048-9. [DOI] [PubMed] [Google Scholar]
  21. Sauer H. W., Babcock K. L., Rusch H. P. Changes in RNA synthesis associated with differentiation (sporulation) in Physarum polycephalum. Biochim Biophys Acta. 1969 Dec 16;195(2):410–421. doi: 10.1016/0005-2787(69)90648-0. [DOI] [PubMed] [Google Scholar]
  22. Schwärzler M., Braun R. Preparation of polysomes from synchronous macroplasmodia of Physarum polycephalum. Biochim Biophys Acta. 1977 Dec 14;479(4):501–505. doi: 10.1016/0005-2787(77)90043-0. [DOI] [PubMed] [Google Scholar]
  23. Stanners C. P. The effect of cycloheximide on polyribosomes from hamster cells. Biochem Biophys Res Commun. 1966 Sep 8;24(5):758–764. doi: 10.1016/0006-291x(66)90390-1. [DOI] [PubMed] [Google Scholar]
  24. Yap S. H., Strair R. K., Shafritz D. A. Effect of a short term fast on the distribution of cytoplasmic albumin messenger ribonucleic acid in rat liver. Evidence for formation of free albumin messenger ribonucleoprotein particles. J Biol Chem. 1978 Jul 25;253(14):4944–4950. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES