Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Nov;140(2):518–524. doi: 10.1128/jb.140.2.518-524.1979

Alterations of deoxyribonucleoside triphosphate pools in Escherichia coli: effects on deoxyribonucleic acid replication and evidence for compartmentation.

M L Pato
PMCID: PMC216677  PMID: 387739

Abstract

Inhibition of ribonucleic acid synthesis in Escherichia coli 15 TAU bar with rifampin or streptolydigin leads to large increases in the sizes of cellular ribonucleoside and deoxyribonucleoside triphosphate pools. Inhibition of protein synthesis leads to increases in the sizes of all nucleoside triphosphate pools except the guanosine triphosphate and deoxyguanosine triphosphate pools; a decrease in the size of the latter pool may be responsible for the slowing of deoxyribonucleic acid replication fork movement observed in this strain in the absence of protein synthesis. Analysis of the kinetics of incorporation of labeled precursors into deoxyribonucleic acid and into cellular pools suggests that functional compartmentation of nucleotide pools exists, allowing the incorporation of exogenously supplied precursors into deoxyribonucleic acid without prior equilibration with the cellular pools.

Full text

PDF
518

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beacham I. R., Beacham K., Zaritsky A., Pritchard R. H. Intracellular thymidine triphosphate concentrations in wild type and in thymine requiring mutants of Escherichia coli 15 and K12. J Mol Biol. 1971 Aug 28;60(1):75–86. doi: 10.1016/0022-2836(71)90448-7. [DOI] [PubMed] [Google Scholar]
  2. Bremer H., Yuan D. Uridine transport and incorporation into nucleic acids in escherichia coli. Biochim Biophys Acta. 1968 Nov 20;169(1):21–34. doi: 10.1016/0005-2787(68)90005-1. [DOI] [PubMed] [Google Scholar]
  3. Chiu C. S., Tomich P. K., Greenberg G. R. Simultaneous initiation of synthesis of bacteriophage T4 DNA and of deoxyribonucleotides. Proc Natl Acad Sci U S A. 1976 Mar;73(3):757–761. doi: 10.1073/pnas.73.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collinsworth W. L., Mathews C. K. Biochemistry of DNA-defective amber mutants of bacteriophage T4. IV. DNA synthesis in plasmolyzed cells. J Virol. 1974 Apr;13(4):908–915. doi: 10.1128/jvi.13.4.908-915.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Firshein W. In situ activity of enzymes on polyacrylamide gels of a deoxyribonucleic acid-membrane fraction extracted from pneumococci. J Bacteriol. 1974 Jun;118(3):1101–1110. doi: 10.1128/jb.118.3.1101-1110.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jensen K. F., Leer J. C., Nygaard P. Thymine utilization in Escherichia coli K12 on the role of deoxyribose 1-phosphate and thymidine phosphorylase. Eur J Biochem. 1973 Dec 17;40(2):345–354. doi: 10.1111/j.1432-1033.1973.tb03203.x. [DOI] [PubMed] [Google Scholar]
  7. Karlström H. O. Inability of Escherichia coli B to incorporate added deoxycytidine, deoxyandenosine, and deoxyguanosine into DNA. Eur J Biochem. 1970 Nov;17(1):68–71. doi: 10.1111/j.1432-1033.1970.tb01135.x. [DOI] [PubMed] [Google Scholar]
  8. Mosbach K., Mattiasson B. Immobilized model systems of enzyme sequences. Curr Top Cell Regul. 1978;14:197–241. doi: 10.1016/b978-0-12-152814-0.50009-5. [DOI] [PubMed] [Google Scholar]
  9. Neuhard J., Randerath E., Randerath K. Ion-exchange thin-layer chromatography. 13. Resolution of complex nucleoside triphosphate mixtures. Anal Biochem. 1965 Nov;13(2):211–222. doi: 10.1016/0003-2697(65)90191-0. [DOI] [PubMed] [Google Scholar]
  10. Nierlich D. P. Amino acid control over RNA synthesis: a re-evaluation. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1345–1352. doi: 10.1073/pnas.60.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pato M. L. Alterations of the rate of movement of deoxyribonucleic acid replication forks. J Bacteriol. 1975 Jul;123(1):272–277. doi: 10.1128/jb.123.1.272-277.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. RANDERATH E., RANDERATH K. RESOLUTION OF COMPLEX NUCLEOTIDE MIXTURES BY TWO-DIMENSIONAL ANION-EXCHANGE THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1964 Oct;16:126–129. doi: 10.1016/s0021-9673(01)82446-8. [DOI] [PubMed] [Google Scholar]
  13. Reddy G. P., Singh A., Stafford M. E., Mathews C. K. Enzyme associations in T4 phage DNA precursor synthesis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3152–3156. doi: 10.1073/pnas.74.8.3152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reichard P. Control of deoxyribonucleotide synthesis in vitro and in vivo. Adv Enzyme Regul. 1972;10:3–16. doi: 10.1016/0065-2571(72)90003-9. [DOI] [PubMed] [Google Scholar]
  15. Rodriguez R. L., Davern C. I. Direction of deoxyribonucleic acid replication in Escherichia coli under various conditions of cell growth. J Bacteriol. 1976 Jan;125(1):346–352. doi: 10.1128/jb.125.1.346-352.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Werner R. Nature of DNA precursors. Nat New Biol. 1971 Sep 22;233(38):99–103. doi: 10.1038/newbio233099a0. [DOI] [PubMed] [Google Scholar]
  17. Wovcha M. G., Chiu C. S., Tomich P. K., Greenberg G. R. Replicative bacteriophage DNA synthesis in plasmolyzed T4-infected cells: evidence for two independent pathways to DNA. J Virol. 1976 Oct;20(1):142–156. doi: 10.1128/jvi.20.1.142-156.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zaritsky A., Pritchard R. H. Replication time of the chromosome in thymineless mutants of Escherichia coli. J Mol Biol. 1971 Aug 28;60(1):65–74. doi: 10.1016/0022-2836(71)90447-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES