Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Nov;140(2):607–611. doi: 10.1128/jb.140.2.607-611.1979

Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide mononucleotide deamidase and characterization of pnuA mutants defective in nicotinamide mononucleotide transport.

D M Kinney, J W Foster, A G Moat
PMCID: PMC216688  PMID: 387742

Abstract

The enzyme nicotinamide mononucleotide deamidase, an integral component of the proposed four-membered pyridine nucleotide cycle (PNC IV), has been demonstrated in extracts of Salmonella typhimurium LT2. The enzyme has an optimum pH of 8.7 and deamidates nicotinamide mononucleotide, forming nicotinic acid mononucleotide. Sigmoidal kinetic data suggest that this enzyme may be allosteric and therefore an important regulatory component of pyridine nucleotide cycle metabolism. Mutants previously designated pncC in anticipation of their lacking nicotinamide mononucleotide deamidase were examined and found to have normal levels of this enzyme. [14C]nicotinamide mononucleotide uptake studies, however, revealed a defect in the transport of this compound. Accordingly, the genetic designation for this locus was changed to pnuA to reflect its involvement in pyridine nucleotide uptake. Evidence is presented for the existence of two separate nicotinamide mononucleotide transport systems.

Full text

PDF
607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Foster J. W., Kinney D. M., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J Bacteriol. 1979 Mar;137(3):1165–1175. doi: 10.1128/jb.137.3.1165-1175.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foster J. W., Kinney D. M., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: regulation of nicotinic acid phosphoribosyltransferase and nicotinamide deamidase. J Bacteriol. 1979 Jun;138(3):957–961. doi: 10.1128/jb.138.3.957-961.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frieden C. Treatment of enzyme kinetic data. II. The multisite case: comparison of allosteric models and a possible new mechanism. J Biol Chem. 1967 Sep 25;242(18):4045–4052. [PubMed] [Google Scholar]
  4. Friedmann H. C., Garstki C. The pyridine nucleotide cycle: presence of a nicotinamide mononucleotide-specific amidohydrolase in Propionibacterium shermanii. Biochem Biophys Res Commun. 1973 Jan 4;50(1):54–58. doi: 10.1016/0006-291x(73)91062-0. [DOI] [PubMed] [Google Scholar]
  5. Fyfe J. A., Friedmann H. C. Vitamin B 12 biosynthesis. Enzyme studies on the formation of the alpha-glycosidic nucleotide precursor. J Biol Chem. 1969 Apr 10;244(7):1659–1666. [PubMed] [Google Scholar]
  6. Gholson R. K., Tritz G. J., Matney T. S., Andreoli A. J. Mode of nicotinamide adenine dinucleotide utilization by Escherichia coli. J Bacteriol. 1969 Sep;99(3):895–896. doi: 10.1128/jb.99.3.895-896.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HARTMAN P. E., LOPER J. C., SERMAN D. Fine structure mapping by complete transduction between histidine-requiring Salmonella mutants. J Gen Microbiol. 1960 Apr;22:323–353. doi: 10.1099/00221287-22-2-323. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lundquist R., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. I. Exponential growth. J Biol Chem. 1971 Feb 25;246(4):1107–1116. [PubMed] [Google Scholar]
  10. McLaren J., Ngo D. T., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. 3. Biosynthesis from alternative precursors in vivo. J Biol Chem. 1973 Jul 25;248(14):5144–5149. [PubMed] [Google Scholar]
  11. Sanderson K. E., Hartman P. E. Linkage map of Salmonella typhimurium, edition V. Microbiol Rev. 1978 Jun;42(2):471–519. doi: 10.1128/mr.42.2.471-519.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wicks F. D., Sakakibara S., Gholson R. K. Evidence for an intermediate in quinolinate biosynthesis in Escherichia coli. J Bacteriol. 1978 Oct;136(1):136–141. doi: 10.1128/jb.136.1.136-141.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES