Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Nov;140(2):745–747. doi: 10.1128/jb.140.2.745-747.1979

Properties and function of the proton-translocating adenosine triphosphatase of Clostridium perfringens.

S M Hasan, B P Rosen
PMCID: PMC216707  PMID: 40963

Abstract

Growth of Clostridium perfringens was inhibited by compounds which dissipate or prevent the formation of electrochemical proton gradients. Membrane vesicles prepared from this organism exhibited Mg2+-dependent adenosine triphosphatase (ATPase) activity sensitive to N,N'-dicyclohexylcarbodiimide. Mg2+-ATPase activity was optimal of 50 degrees C, but no discrete pH optimum was observed. Adenosine triphosphate-dependent quenching of the fluorescence of the weak base quinacrine by everted membrane vesicles suggested that the Mg2+-ATPase is a proton pump capable of generating an electrochemical proton gradient. Adenosine triphosphate-dependent transport of Ca2+ by everted vesicles was sensitive to uncouplers and inhibitors of the Mg2+-ATPase.

Full text

PDF
745

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler L. W., Ichikawa T., Hasan S. M., Tsuchiya T., Rosen B. P. Orientation of the protonmotive force in membrane vesicles of Escherichia coli. J Supramol Struct. 1977;7(1):15–27. doi: 10.1002/jss.400070103. [DOI] [PubMed] [Google Scholar]
  2. Adler L. W., Rosen B. P. Functional mosaicism of membrane proteins in vesicles of Escherichia coli. J Bacteriol. 1977 Feb;129(2):959–966. doi: 10.1128/jb.129.2.959-966.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booth I. R., Morris J. G. Proton-motive force in the obligately anaerobic bacterium Clostridium pasteurianum: a role in galactose and gluconate uptake. FEBS Lett. 1975 Nov 15;59(2):153–157. doi: 10.1016/0014-5793(75)80364-4. [DOI] [PubMed] [Google Scholar]
  4. Clarke D. J., Morris J. G. Partial purification of a dicyclohexylcarbodi-imide-sensitive membrane adenosine triphosphatase complex from the obligately anaerobic bacterium Clostridium Pasteurianum. Biochem J. 1976 Mar 15;154(3):725–729. doi: 10.1042/bj1540725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall J. B. Evolution of the prokaryotes. J Theor Biol. 1971 Mar;30(3):429–454. doi: 10.1016/0022-5193(71)90001-4. [DOI] [PubMed] [Google Scholar]
  6. Harold F. M., Van Brunt J. Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science. 1977 Jul 22;197(4301):372–373. doi: 10.1126/science.69317. [DOI] [PubMed] [Google Scholar]
  7. Hasan S. M., Hall J. B. The physiological function of nitrate reduction in Clostridium perfringens. J Gen Microbiol. 1975 Mar;87(1):120–128. doi: 10.1099/00221287-87-1-120. [DOI] [PubMed] [Google Scholar]
  8. Kobayashi H., Van Brunt J., Harold F. M. ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. J Biol Chem. 1978 Apr 10;253(7):2085–2092. [PubMed] [Google Scholar]
  9. Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
  10. Riebeling V., Jungermann K. Properties and function of clostridial membrane ATPase. Biochim Biophys Acta. 1976 Jun 8;430(3):434–444. doi: 10.1016/0005-2728(76)90019-0. [DOI] [PubMed] [Google Scholar]
  11. Riebeling V., Thauer R. K., Jungermann K. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem. 1975 Jul 1;55(2):445–453. doi: 10.1111/j.1432-1033.1975.tb02181.x. [DOI] [PubMed] [Google Scholar]
  12. Rosen B. P., Brey R. N., Hasan S. M. Energy transduction in Escherichia coli: new mutation affecting the Fo portion of the ATP synthetase complex. J Bacteriol. 1978 Jun;134(3):1030–1038. doi: 10.1128/jb.134.3.1030-1038.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosen B. P., Tsuchiya T. Preparation of everted membrane vesicles from Escherichia coli for the measurement of calcium transport. Methods Enzymol. 1979;56:233–241. doi: 10.1016/0076-6879(79)56026-1. [DOI] [PubMed] [Google Scholar]
  14. Rottenberg H., Lee C. P. Energy dependent hydrogen ion accumulation in submitochondrial particles. Biochemistry. 1975 Jun 17;14(12):2675–2680. doi: 10.1021/bi00683a017. [DOI] [PubMed] [Google Scholar]
  15. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tsuchiya T., Rosen B. P. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli. J Biol Chem. 1976 Feb 25;251(4):962–967. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES