Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Dec;140(3):852–858. doi: 10.1128/jb.140.3.852-858.1979

Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria.

E Fautz, G Rosenfelder, L Grotjahn
PMCID: PMC216725  PMID: 118159

Abstract

The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group.

Full text

PDF
852

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achenbach H. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol. 1974;101(2):131–144. doi: 10.1007/BF00455933. [DOI] [PubMed] [Google Scholar]
  2. Bauman A. J., Simmonds P. G. Fatty acids and polar lipids of extremely thermophilic filamentous bacterial masses from two Yellowstone hot springs. J Bacteriol. 1969 May;98(2):528–531. doi: 10.1128/jb.98.2.528-531.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryn K., Rietschel E. T. L-2-hydroxytetradecanoic acid as a constituent of Salmonella lipopolysaccharides (lipid A). Eur J Biochem. 1978 May 16;86(2):311–315. doi: 10.1111/j.1432-1033.1978.tb12312.x. [DOI] [PubMed] [Google Scholar]
  4. Dworkin M. Biology of the myxobacteria. Annu Rev Microbiol. 1966;20:75–106. doi: 10.1146/annurev.mi.20.100166.000451. [DOI] [PubMed] [Google Scholar]
  5. Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kenyon C. N. Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol. 1972 Feb;109(2):827–834. doi: 10.1128/jb.109.2.827-834.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kenyon C. N., Gray A. M. Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus aurantiacus. J Bacteriol. 1974 Oct;120(1):131–138. doi: 10.1128/jb.120.1.131-138.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kenyon C. N., Rippka R., Stanier R. Y. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol. 1972;83(3):216–236. doi: 10.1007/BF00645123. [DOI] [PubMed] [Google Scholar]
  9. Kleinig H., Reichenbach H. Carotenoid glucosides and menaquinones from the gliding bacterium Herpetosiphon giganteus Hp a2. Arch Microbiol. 1977 Apr 1;112(3):307–310. doi: 10.1007/BF00413098. [DOI] [PubMed] [Google Scholar]
  10. Minnikin D. E., Alshamaony L., Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol. 1975 May;88(1):200–204. doi: 10.1099/00221287-88-1-200. [DOI] [PubMed] [Google Scholar]
  11. Norén B., Odham G. Antagonistic effects of Myxococcus xanthus on fungi. II. Isolation and characterization of inhibitory lipid factors. Lipids. 1973 Oct;8(10):573–583. doi: 10.1007/BF02532714. [DOI] [PubMed] [Google Scholar]
  12. Pugh E. L., Sauer F., Waite M., Toomey R. E., Wakil S. J. Studies on the mechanism of fatty acid synthesis. 13. The role of beta-hydroxy acids in the synthesis of palmitate and cis vaccenate by the Escherichia coli enzyme system. J Biol Chem. 1966 Jun 10;241(11):2635–2643. [PubMed] [Google Scholar]
  13. RYHAGE R., STENHAGEN E. Mass spectrometry in lipid research. J Lipid Res. 1960 Oct;1:361–390. [PubMed] [Google Scholar]
  14. Rietschel E. T., Gottert H., Lüderitz O., Westphal O. Nature and linkages of the fatty acids present in the lipid-A component of Salmonella lipopolysaccharides. Eur J Biochem. 1972 Jul 13;28(2):166–173. doi: 10.1111/j.1432-1033.1972.tb01899.x. [DOI] [PubMed] [Google Scholar]
  15. Rosenfelder G., Lüderitz O., Westphal O. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur J Biochem. 1974 May 15;44(2):411–420. doi: 10.1111/j.1432-1033.1974.tb03499.x. [DOI] [PubMed] [Google Scholar]
  16. Walker R. W. Cis-11-hexadecenoic acid from Cytophaga hutchinsonii lipids. Lipids. 1969 Jan;4(1):15–18. doi: 10.1007/BF02531788. [DOI] [PubMed] [Google Scholar]
  17. Ware J. C., Dworkin M. Fatty acids of Myxococcus xanthus. J Bacteriol. 1973 Jul;115(1):253–261. doi: 10.1128/jb.115.1.253-261.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. White D., Dworkin M., Tipper D. J. Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. J Bacteriol. 1968 Jun;95(6):2186–2197. doi: 10.1128/jb.95.6.2186-2197.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. YAMAKAWA T., UETA N. GAS-LIQUID CHROMATOGRAPHY OF CARBOHYDRATES. Jpn J Exp Med. 1964 Feb;34:37–51. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES