Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Dec;140(3):938–943. doi: 10.1128/jb.140.3.938-943.1979

Synthesis of nitrogenase and heterocysts by Anabaena sp. CA in the presence of high levels of ammonia.

P J Bottomley, J F Grillo, C Van Baalen, F R Tabita
PMCID: PMC216736  PMID: 118162

Abstract

Anabaena sp. CA fails to synthesize heterocysts and nitrogenase when grown with KNO3 as the nitrogen source. By contrast, both heterocysts and proheterocysts are synthesized in NH4Cl-containing media to a level nearly commensurate with cells grown in the absence of combined nitrogen. The growth rate of the organism in NH4Cl-containing media was similar to that obtained with KNO3 as the nitrogen source and was independent of the presence of N2 in the atmosphere. Thus, our results indicate that the organism assimilated nitrate and ammonium nitrogen equally well to meet the nitrogen requirements for growth. Moreover, in contrast to previous studies with other cyanobacteria, the repressor singal for heterocyst differentiation in Anabaena sp. CA is not derived from the metabolism of ammonia but appears to be involved with nitrate metabolism. Nitrogenase activity was partially expressed in NH4Cl-grown cultures. Increasing the level of nitrogenase activity to a value representative of a N2-grown culture required both the inhibition of ammonia assimilation and de novo protein synthesis. An increase in the number of mature heterocysts was not required. The fact that high levels of exogenous ammonia only partially repress the synthesis of proteins required for the maximum expression of nitrogenase activity in Anabaena sp. CA has important implications.

Full text

PDF
938

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen K., Shanmugam K. T. Energetics of biological nitrogen fixation: determination of the ratio of formation of H2 to NH4+ catalysed by nitrogenase of Klebsiella pneumoniae in vivo. J Gen Microbiol. 1977 Nov;103(1):107–122. doi: 10.1099/00221287-103-1-107. [DOI] [PubMed] [Google Scholar]
  2. Benemann J. R., Weare N. M. Hydrogen Evolution by Nitrogen-Fixing Anabaena cylindrica Cultures. Science. 1974 Apr 12;184(4133):174–175. doi: 10.1126/science.184.4133.174. [DOI] [PubMed] [Google Scholar]
  3. Daesch G., Mortenson L. E. Effect of ammonia on the synthesis and function of the N 2 -fixing enzyme system in Clostridium pasteurianum. J Bacteriol. 1972 Apr;110(1):103–109. doi: 10.1128/jb.110.1.103-109.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daesch G., Mortenson L. E. Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J Bacteriol. 1968 Aug;96(2):346–351. doi: 10.1128/jb.96.2.346-351.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans H. J., Barber L. E. Biological nitrogen fixation for food and fiber production. Science. 1977 Jul 22;197(4301):332–339. doi: 10.1126/science.197.4301.332. [DOI] [PubMed] [Google Scholar]
  6. Gordon J. K., Brill W. J. Derepression of nitrogenase synthesis in the presence of excess NH4+. Biochem Biophys Res Commun. 1974 Aug 5;59(3):967–971. doi: 10.1016/s0006-291x(74)80074-4. [DOI] [PubMed] [Google Scholar]
  7. Gordon J. K., Brill W. J. Mutants that produce nitrogenase in the presence of ammonia. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3501–3503. doi: 10.1073/pnas.69.12.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall D. O. Photobiological energy conversion. FEBS Lett. 1976 Apr 15;64(1):6–16. doi: 10.1016/0014-5793(76)80236-0. [DOI] [PubMed] [Google Scholar]
  9. Hill S. The apparent ATP requirement for nitrogen fixation in growing Klebsiella pneumoniae. J Gen Microbiol. 1976 Aug;96(2):297–312. doi: 10.1099/00221287-95-2-297. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MacNeil T., MacNeil D., Roberts G. P., Supiano M. A., Brill W. J. Fine-structure mapping and complementation analysis of nif (nitrogen fixation) genes in Klebsiella pneumoniae. J Bacteriol. 1978 Oct;136(1):253–266. doi: 10.1128/jb.136.1.253-266.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neilson A. H., Nordlund S. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine. J Gen Microbiol. 1975 Nov;91(1):53–62. doi: 10.1099/00221287-91-1-53. [DOI] [PubMed] [Google Scholar]
  13. Roberts G. P., MacNeil T., MacNeil D., Brill W. J. Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J Bacteriol. 1978 Oct;136(1):267–279. doi: 10.1128/jb.136.1.267-279.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shah V. K., Davis L. C., Brill W. J. Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta. 1972 Feb 28;256(2):498–511. doi: 10.1016/0005-2728(72)90078-3. [DOI] [PubMed] [Google Scholar]
  15. Shanmugam K. T., Chan I., Morandi C. Regulation of nitrogen fixation. Nitrogenase-derepressed mutants of Klebsiella pneumoniae. Biochim Biophys Acta. 1975 Nov 11;408(2):101–111. doi: 10.1016/0005-2728(75)90002-x. [DOI] [PubMed] [Google Scholar]
  16. Shanmugam K. T., Morandi C. Amino acids as repressors of nitrogenase biosynthesis in Klebsiella pneumoniae. Biochim Biophys Acta. 1976 Jul 21;437(2):322–332. doi: 10.1016/0304-4165(76)90002-7. [DOI] [PubMed] [Google Scholar]
  17. Stacey G., Bottomley P. J., Van Baalen C., Tabita F. R. Control of heterocyst and nitrogenase synthesis in cyanobacteria. J Bacteriol. 1979 Jan;137(1):321–326. doi: 10.1128/jb.137.1.321-326.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stewart W. D., Rowell P. Effects of L-methionine-DL-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. Biochem Biophys Res Commun. 1975 Aug 4;65(3):846–856. doi: 10.1016/s0006-291x(75)80463-3. [DOI] [PubMed] [Google Scholar]
  19. Streicher S. L., Gurney E. G., Valentine R. C. The nitrogen fixation genes. Nature. 1972 Oct 27;239(5374):495–499. doi: 10.1038/239495a0. [DOI] [PubMed] [Google Scholar]
  20. Streicher S. L., Shanmugam K. T., Ausubel F., Morandi C., Goldberg R. B. Regulation of nitrogen fixation in Klebsiella pneumoniae: evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J Bacteriol. 1974 Nov;120(2):815–821. doi: 10.1128/jb.120.2.815-821.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tubb R. S. Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature. 1974 Oct 11;251(5475):481–485. doi: 10.1038/251481a0. [DOI] [PubMed] [Google Scholar]
  22. Weare N. M., Shanmugam K. T. Photoproduction of ammonium ion from N2 in Rhodospirillum rubrum. Arch Microbiol. 1976 Nov 2;110(23):207–213. doi: 10.1007/BF00690229. [DOI] [PubMed] [Google Scholar]
  23. Zumft W. G., Castillo F. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Arch Microbiol. 1978 Apr 27;117(1):53–60. doi: 10.1007/BF00689351. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES