Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Jul;139(1):80–87. doi: 10.1128/jb.139.1.80-87.1979

Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis.

M J Henderson, F H Milazzo
PMCID: PMC216829  PMID: 222733

Abstract

Arylsulfatase synthesis was shown to occur in Salmonella typhimurium LT2. The enzyme had a molecular weight of approximately 50,000 and was separated into five forms by isoelectrofocusing. The optimal pH for substrate hydrolysis was pH 6.7, with Michaelis constants for nitrocatechol sulfate and nitrophenyl sulfate being 4.1 and 7.9 mM, respectively. Enzyme synthesis was strongly influenced by the presence of tyramine in the growth medium. The uptake of [14C]tyramine and arylsulfatase synthesis were initiated during the second phase of a diauxie growth response, when the organism was cultured with different carbon sources. Adenosine 3',5'-cyclic monophosphoric acid enhanced the uptake of tyramine and the levels of arylsulfatase synthesized. However, the addition of glucose and glycerol to organisms actively transporting tyramine and synthesizing enzyme caused a rapid inhibition of both of these processes. This inhibition was not reversed by adding adenosine 3',5'-cyclic monophosphoric acid. The results suggest that the effect of the carbon source on tyramine transport and arylsulfatase synthesis may be explained in terms of inducer exclusion.

Full text

PDF
80

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi T., Murooka Y., Harada T. Derepression of arylsulfatase synthesis in Aerobacter aerogenes by tyramine. J Bacteriol. 1973 Oct;116(1):19–24. doi: 10.1128/jb.116.1.19-24.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adachi T., Murooka Y., Harada T. Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes. J Bacteriol. 1975 Jan;121(1):29–35. doi: 10.1128/jb.121.1.29-35.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adachi T., Okamura H., Murooka Y., Harada T. Catabolite repression and derepression of arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1974 Nov;120(2):880–885. doi: 10.1128/jb.120.2.880-885.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alper M. D., Ames B. N. Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J Bacteriol. 1978 Jan;133(1):149–157. doi: 10.1128/jb.133.1.149-157.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burns G. R., Wynn C. H. Studies on the Arylsulphatase and phenol sulphotransferase activities of Aspergillus oryzae. Biochem J. 1975 Sep;149(3):697–705. doi: 10.1042/bj1490697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DODGSON K. S. Observations on the arylsulphatase of Proteus vulgaris. Enzymologia. 1959 Jul 15;20:301–312. [PubMed] [Google Scholar]
  7. Delisle G. J., Milazzo F. H. Characterization of arylsulfatase isoenzymes from Pseudomonas aeruginosa. Can J Microbiol. 1972 May;18(5):561–568. doi: 10.1139/m72-089. [DOI] [PubMed] [Google Scholar]
  8. Delisle G., Milazzo F. H. The isolation of arylsulphatase isoenzymes from Pseudomonas aeruginosa. Biochim Biophys Acta. 1970 Sep 16;212(3):505–508. doi: 10.1016/0005-2744(70)90258-5. [DOI] [PubMed] [Google Scholar]
  9. FOWLER L. R., RAMMLER D. H. SULFUR METABOLISM OF AEROBACTOR AEROGENES. II. THE PURIFICATION AND SOME PROPERTIES OF A SULFATASE. Biochemistry. 1964 Feb;3:230–237. doi: 10.1021/bi00890a015. [DOI] [PubMed] [Google Scholar]
  10. Fitzgerald J. W., Payne W. J. The regulation of arylsulphatase formation in Pseudomonas C 12 B. Microbios. 1972 Sep-Oct;6(22):147–156. [PubMed] [Google Scholar]
  11. Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
  12. Milazzo F. H., Fitzgerald J. W. The effect of some cultural conditions on the arylsulfatase of Proteus rettgeri. Can J Microbiol. 1967 Jun;13(6):659–664. doi: 10.1139/m67-087. [DOI] [PubMed] [Google Scholar]
  13. Murooka Y., Adachi T., Okamura H., Harada T. Genetic control of arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1977 Apr;130(1):74–81. doi: 10.1128/jb.130.1.74-81.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murooka Y., Higashiura T., Harada T. Genetic mapping of tyramine oxidase and arylsulfatase genes and their regulation in intergeneric hybrids of enteric bacteria. J Bacteriol. 1978 Nov;136(2):714–722. doi: 10.1128/jb.136.2.714-722.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okamura H., Murooka Y., Harada T. Regulation of tyramine oxidase synthesis in Klebsiella aerogenes. J Bacteriol. 1976 Jul;127(1):24–31. doi: 10.1128/jb.127.1.24-31.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okamura H., Murooka Y., Harada T. Tyramine oxidase and regulation of arylsulfatase synthesis in Klebsiella aerogenes. J Bacteriol. 1977 Jan;129(1):59–65. doi: 10.1128/jb.129.1.59-65.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RAMMLER D. H., GRADO C., FOWLER L. R. SULFUR METABOLISM OF AEROBACTER AEROGENES. I. A REPRESSIBLE SULFATASE. Biochemistry. 1964 Feb;3:224–230. doi: 10.1021/bi00890a014. [DOI] [PubMed] [Google Scholar]
  18. Reisner A. H., Nemes P., Bucholtz C. The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem. 1975 Apr;64(2):509–516. doi: 10.1016/0003-2697(75)90461-3. [DOI] [PubMed] [Google Scholar]
  19. Righetti P. G., Caravaggio T. Isoelectric points and molecular weights of proteins. J Chromatogr. 1976 Apr 21;127(11):1–28. doi: 10.1016/s0021-9673(00)98537-6. [DOI] [PubMed] [Google Scholar]
  20. Saier M. H., Jr, Straud H., Massman L. S., Judice J. J., Newman M. J., Feucht B. U. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol. 1978 Mar;133(3):1358–1367. doi: 10.1128/jb.133.3.1358-1367.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stevens R. L., Fluharty A. L., Killgrove A. R., Kihara H. Microheterogeneity of arylsulfatase A from human tissues. Biochim Biophys Acta. 1976 Oct 11;445(3):661–671. doi: 10.1016/0005-2744(76)90118-2. [DOI] [PubMed] [Google Scholar]
  22. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  23. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  24. Yamada T., Murooka Y., Harada T. Comparative immunological studies on arylsulfatase in bacteria of the family Enterobacteriaceae: occurrence of latent arylsulfatase protein regulated by sulfur compounds and tyramine. J Bacteriol. 1978 Feb;133(2):536–541. doi: 10.1128/jb.133.2.536-541.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES