Abstract
Uncouplers and inhibitors of electron transport affected growth and electron transport of rumen bacteria in various ways. Selenomonas ruminantium was not affected by inhibitor and uncoupler concentrations which affected growth and electron transport of Bacteroides ruminicola, B. succinogenes, and Butyrivibrio fibrisolvens. Inhibitors, when active, led to accumulation of reduced electron carriers before the site of action, but differences were found among organisms in the site of action of these inhibitors. Uncouplers reduced the glucose molar growth yields (Ygluc) of B. ruminicola, B. succinogenes, and B. fibrisolvens compared with those obtained without uncouplers. The extent of Ygluc reduction accompanying inhibitor exposure reflected electron transport chain structure. S. ruminantium appeared to obtain its adenosine 5'-triphosphate from substrate-level processes only. The other organisms studied appeared to obtain adenosine 5'-triphosphate both from substrate-level processes and from electron transport but differed in the amount of adenosine 5'-triphosphate obtained from glucose catabolism and in the proportions of adenosine 5'-triphosphate obtained from substrate-level reactions and electron transport.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Forrest W. W., Walker D. J. The generation and utilization of energy during growth. Adv Microb Physiol. 1971;5:213–274. doi: 10.1016/s0065-2911(08)60408-7. [DOI] [PubMed] [Google Scholar]
- HUNGATE R. E. POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS. J Bacteriol. 1963 Oct;86:848–854. doi: 10.1128/jb.86.4.848-854.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobson P. N., Summers R. The continuous culture of anaerobic bacteria. J Gen Microbiol. 1967 Apr;47(1):53–65. doi: 10.1099/00221287-47-1-53. [DOI] [PubMed] [Google Scholar]
- Howlett M. R., Mountfort D. O., Turner K. W., Roberton A. M. Metabolism and growth yields in Bacteroides ruminicola strain b14. Appl Environ Microbiol. 1976 Aug;32(2):274–283. doi: 10.1128/aem.32.2.274-283.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOBS N. J., WOLIN M. J. Electron-transport system of Vibrio succinogenes. I. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta. 1963 Jan 1;69:18–28. doi: 10.1016/0006-3002(63)91221-6. [DOI] [PubMed] [Google Scholar]
- John A., Isaacson H. R., Bryant M. P. Isolation and characteristics of a ureolytic strain of Selenomonas ruminatium. J Dairy Sci. 1974 Sep;57(9):1003–1014. doi: 10.3168/jds.s0022-0302(74)85001-0. [DOI] [PubMed] [Google Scholar]
- Macy J., Probst I., Gottschalk G. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol. 1975 Aug;123(2):436–442. doi: 10.1128/jb.123.2.436-442.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCall D. R., Caldwell D. R. Tetrapyrrole utilization by Bacteroids ruminocola. J Bacteriol. 1977 Sep;131(3):809–814. doi: 10.1128/jb.131.3.809-814.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy C. A., Peck H. D., Jr Electron transport phosphorylation coupled to fumarate reduction by H2- and Mg2+-dependent adenosine triphosphatase activity in extracts of the rumen anaerobe Vibrio succinogenes. J Bacteriol. 1978 Jun;134(3):982–991. doi: 10.1128/jb.134.3.982-991.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITE D. C., BRYANT M. P., CALDWELL D. R. Cytochromelinked fermentation in Bacteroides ruminicola. J Bacteriol. 1962 Oct;84:822–828. doi: 10.1128/jb.84.4.822-828.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]