Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Aug;139(2):460–467. doi: 10.1128/jb.139.2.460-467.1979

Spontaneous and induced rho mutants of Saccharomyces cerevisiae: patterns of loss of mitochondrial genetic markers.

M Heude, H Fukuhara, E Moustacchi
PMCID: PMC216891  PMID: 378973

Abstract

The deletion which leads to spontaneous rho mutants occurs preferentially at a unique region covering genes oxi3, pho1/OII, and mit175. The frequency of loss of genetic markers in this region was significantly higher than in other regions as determined with a 15- marker system. When various mutagenic treatments were applied, this specific pattern of deletion was also observed, but it was dramatically amplified. This suggests that the basic mechanism of rho production is the same in yeast mitochondrial genomes in both spontaneous and induced mutants.

Full text

PDF
460

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolotin-Fukuhara M., Fay G., Fukuhara H. Temperature-sensitive respiratory-deficient mitochondrial mutations: isolation and genetic mapping. Mol Gen Genet. 1977 Apr 29;152(3):295–305. doi: 10.1007/BF00693083. [DOI] [PubMed] [Google Scholar]
  2. Boltin-Fukuhara M., Fukuhara H. Modified recombination and transmission of mitochondrial genetic markers in rho minus mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4608–4612. doi: 10.1073/pnas.73.12.4608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carignani G., Dujardin G., Slonimski P. P. Petite deletion map of the mitochondrial oxi3 region in Saccharomyces cerevisiae. Mol Gen Genet. 1979 Jan 2;167(3):301–308. doi: 10.1007/BF00267423. [DOI] [PubMed] [Google Scholar]
  4. Clark-Walker G. D., Miklos G. L. Complementation in cytoplasmic petite mutants of yeast to form respiratory competent cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):372–375. doi: 10.1073/pnas.72.1.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deutsch J., Dujon B., Netter P., Petrochilo E., Slonimski P. P., Bolotin-Fukuhara M., Coen D. Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics. 1974 Feb;76(2):195–219. doi: 10.1093/genetics/76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
  7. Fukuhara H., Moustacchi E., Wesolowski M. Preferential deletion of a specific region of mitochondrial DNA in Saccharomyces cerevisiae by ethidium bromide and 3-carbethoxy-psoralen: directional retention of DNA sequence. Mol Gen Genet. 1978 Jun 14;162(2):191–201. doi: 10.1007/BF00267876. [DOI] [PubMed] [Google Scholar]
  8. Juliani M. H., Hixon S., Moustacchi E. Mitochondrial genetic damage induced in yeast by a photoactivated furocoumarin in combination with ethidium bromide or ultraviolet light. Mol Gen Genet. 1976 Jun 15;145(3):249–254. doi: 10.1007/BF00325820. [DOI] [PubMed] [Google Scholar]
  9. Lewin A., Morimoto R., Rabinowitz M. Restriction enzyme analysis of mitochondrial DNAs of petite mutants of yeast: classification of petites, and deletion mapping of mitochondrial genes. Mol Gen Genet. 1978 Jul 25;163(3):257–275. doi: 10.1007/BF00271955. [DOI] [PubMed] [Google Scholar]
  10. Linnane A. W., Saunders G. W., Gingold E. B., Lukins H. B. The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1968 Mar;59(3):903–910. doi: 10.1073/pnas.59.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morimoto R., Merten S., Lewin A., Martin N. C., Rabinowitz M. Physical mapping of genes on yeast mitochondrial DNA: localization of antibiotic resistance loci, and rRNA and tRNA genes. Mol Gen Genet. 1978 Jul 25;163(3):241–255. doi: 10.1007/BF00271954. [DOI] [PubMed] [Google Scholar]
  12. Oakley K. M., Clark-Walker G. D. Abnormal mitochondrial genomes in yeast restored to respiratory competence. Genetics. 1978 Nov;90(3):517–530. doi: 10.1093/genetics/90.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schweyen R. J., Weiss-Brummer B., Backhaus B., Kaudewitz F. The genetic map of the mitochondrial genome in yeast: map positions of drug' and mit- markers as revealed from population analyses of rho- clones in Saccharomyces cerevisiae. Mol Gen Genet. 1978 Feb 16;159(2):151–160. doi: 10.1007/BF00270888. [DOI] [PubMed] [Google Scholar]
  14. Subík J., Takácsová G., Kovác L. Intramitochondrial ATP and cell functions. I. Growing yeast cells depleted of intramitochondrial ATP are losing mitochondrial genes. Mol Gen Genet. 1978 Oct 25;166(1):103–116. doi: 10.1007/BF00379735. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES