Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Jun;146(3):841–846. doi: 10.1128/jb.146.3.841-846.1981

Effect of growth rate and nutrient limitation on the transformability of Escherichia coli with plasmid deoxyribonucleic acid.

I M Jones, S B Primrose, A Robinson, D C Ellwood
PMCID: PMC216934  PMID: 7016833

Abstract

The observed transformation frequency by plasmid deoxyribonucleic acid of Escherichia coli grown in continuous culture was found to depend on both the steady-state growth rate and the type of nutrient used to limit growth. With carbon, nitrogen, or phosphorus limitation, the faster the growth rate, the higher the transformation frequency. The increase in transformation frequency associated with higher rates was shown to be due to more transformable cells in the population rather than an increased efficiency of deoxyribonucleic acid uptake. Growth rate had relatively little effect on the transformability of cells from sulfate- and Mg2+-limited chemostats, indicating that some factor other than the growth rate must influence the frequency of transformation. Regardless of the nutrient limitation or the growth rate, no transformants were obtained in the absence of CaCl2.

Full text

PDF
841

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  2. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Colman A., Byers M. J., Primrose S. B., Lyons A. Rapid purification of plasmid DNAs by hydroxyapatite chromatography. Eur J Biochem. 1978 Nov 2;91(1):303–310. doi: 10.1111/j.1432-1033.1978.tb20966.x. [DOI] [PubMed] [Google Scholar]
  4. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  5. Grover N. B., Woldringh C. L., Zaritsky A., Rosenberger R. F. Elongation of rod-shaped bacteria. J Theor Biol. 1977 Jul 21;67(2):181–193. doi: 10.1016/0022-5193(77)90192-8. [DOI] [PubMed] [Google Scholar]
  6. Henner W. D., Kleber I., Benzinger R. Transfection of Escherichia coli spheroplasts. 3. Facilitation of transfection and stabilization of spheroplasts by different basic polymers. J Virol. 1973 Oct;12(4):741–747. doi: 10.1128/jvi.12.4.741-747.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lin E. C. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. doi: 10.1146/annurev.ge.04.120170.001301. [DOI] [PubMed] [Google Scholar]
  8. Neijssel O. M., Tempest D. W. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture. Arch Microbiol. 1975 Dec 31;106(3):251–258. doi: 10.1007/BF00446531. [DOI] [PubMed] [Google Scholar]
  9. Notani N. K., Setlow J. K. Mechanism of bacterial transformation and transfection. Prog Nucleic Acid Res Mol Biol. 1974;14(0):39–100. doi: 10.1016/s0079-6603(08)60205-6. [DOI] [PubMed] [Google Scholar]
  10. Tempest D. W., Hunter J. R., Sykes J. Magnesium-limited growth of Aerobacter aerogenes in a chemostat. J Gen Microbiol. 1965 Jun;39(3):355–366. doi: 10.1099/00221287-39-3-355. [DOI] [PubMed] [Google Scholar]
  11. Venema G. Bacterial transformation. Adv Microb Physiol. 1979;19:245–331. doi: 10.1016/s0065-2911(08)60200-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES