Abstract
The membrane-bound enzymes participating in the syntheses of the teichoic acid main chain and linkage unit have been solubilized with Triton X-100 and fractionated by sucrose density gradient centrifugation. Two main fractions were obtained: a heavy fraction, containing enzymes effecting synthesis of the main chain attached to the linkage unit, which was associated with only a small amount of lipid, and a light fraction which was rich in prenyl phosphate and catalyzed only linkage-unit synthesis. The separation by density was not based entirely on polypeptide chain length, as some of the shortest chains appeared in the denser fractions and some relatively high-molecular-weight peptides occurred in the lightest fraction. High activity for linkage-unit synthesis was observed in a fraction containing only a few peptides. Addition of ficaprenyl phosphate to the enzyme preparations had no stimulatory effect. It is concluded that the enzymes for main-chain and linkage unit syntheses frm one or more fairly tightly associated complexes and that polyprenyl phosphate is an integral firmly bound component of the complex in which the linkage unit is synthesized.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. G., Hussey H., Baddiley J. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J. 1972 Mar;127(1):11–25. doi: 10.1042/bj1270011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baddiley J., Blumsom N. L., Douglas L. J. The biosynthesis of the wall teichoic acid in Staphylococcus lactis I3. Biochem J. 1968 Dec;110(3):565–571. doi: 10.1042/bj1100565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bracha R., Davidson R., Mirelman D. Defect in biosynthesis of the linkage unit between peptidoglycan and teichoic acid in a bacteriophage-resistant mutant of Staphylococcus aureus. J Bacteriol. 1978 May;134(2):412–417. doi: 10.1128/jb.134.2.412-417.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McArthur H. A., Hancock I. C., Roberts F. M., Baddiley J. Biosynthesis of teichoic acid in Micrococcus varians ATCC 29750. Characterization of a further lipid intermediate. FEBS Lett. 1980 Mar 10;111(2):317–323. doi: 10.1016/0014-5793(80)80818-0. [DOI] [PubMed] [Google Scholar]
- McArthur H. A., Roberts F. M., Hancock I. C., Baddiley J. Lipid intermediates in the biosynthesis of the linkage unit between teichoic acids and peptidoglycan. FEBS Lett. 1978 Feb 15;86(2):193–200. doi: 10.1016/0014-5793(78)80561-4. [DOI] [PubMed] [Google Scholar]
- Roberts F. M., McArthur H. A., Hancock I. C., Baddiley J. Biosynthesis of the linkage unit joining peptidoglycan to poly(N-acetylglucosamine 1-phosphate) in walls of Micrococcus varians ATCC 29750. FEBS Lett. 1979 Jan 15;97(2):211–216. doi: 10.1016/0014-5793(79)80086-1. [DOI] [PubMed] [Google Scholar]
- Wang C., Smith R. L. Lowry determination of protein in the presence of Triton X-100. Anal Biochem. 1975 Feb;63(2):414–417. doi: 10.1016/0003-2697(75)90363-2. [DOI] [PubMed] [Google Scholar]
- Warren G. B., Toon P. A., Birdsall N. J., Lee A. G., Metcalfe J. C. Reconstitution of a calcium pump using defined membrane components. Proc Natl Acad Sci U S A. 1974 Mar;71(3):622–626. doi: 10.1073/pnas.71.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]