Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Jun;146(3):997–1002. doi: 10.1128/jb.146.3.997-1002.1981

Coregulation of oxidized nicotinamide adenine dinucleotide (phosphate) transhydrogenase and glutamate dehydrogenase activities in enteric bacteria during nitrogen limitation.

A Liang, R L Houghton
PMCID: PMC216953  PMID: 6787021

Abstract

The relationship between oxidized nicotinamide adenine dinucleotide (phosphate) [NAD(P)+] transhydrogenase (EC 1.6.1.1) and NAD(P)+ glutamate dehydrogenase in several enteric bacteria which differ slightly in their regulation of nitrogen metabolism was studied. Escherichia coli strain K-12 was grown on glucose and various concentrations of NH4Cl as the sole nitrogen source. In the range of 0.5 to 20 mM NH4Cl, the energy-independent transhydrogenase increased two to threefold. Comparable changes occurred in NAD(P)+-linked glutamate dehydrogenase. NH4Cl concentrations of 20 to 60 mM resulted in relatively constant specific activities for both enzymes. Higher exogenous NH4Cl, however, led to a decline in both activities. Isocitrate dehydrogenase, another potential source of cellular NADPH, was insensitive to NH4Cl limitation. Similar studies in the presence of glutamate and different exogenous NH4Cl concentrations again showed concerted effects on both enzymes. Growth on glutamate as the sole nitrogen source led to severe repression of both transhydrogenase and glutamate dehydrogenase. In Salmonella typhimurium, both enzymes were unaffected by limiting NH4Cl or growth on glutamate as the sole nitrogen source. Both were, however, repressed by growth on aspartate, a potential source of cellular glutamate. Coordinate changes in glutamate dehydrogenase and transhydrogenase were also evident in Klebsiella aerogenes, particularly under conditions in which glutamate dehydrogenase was regulated inversely to glutamate synthetase. Coordinate changes in glutamate dehydrogenase and transhydrogenase in enteric bacteria are discussed in terms of the possible involvement of the latter enzyme as a direct source of NADPH in the ammonia assimilation system.

Full text

PDF
997

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender R. A., Janssen K. A., Resnick A. D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977 Feb;129(2):1001–1009. doi: 10.1128/jb.129.2.1001-1009.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender R. A., Macaluso A., Magasanik B. Glutamate dehydrogenase: genetic mapping and isolation of regulatory mutants of Klebsiella aerogenes. J Bacteriol. 1976 Jul;127(1):141–148. doi: 10.1128/jb.127.1.141-148.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenchley J. E., Baker C. A., Patil L. G. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. J Bacteriol. 1975 Oct;124(1):182–189. doi: 10.1128/jb.124.1.182-189.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csonka L. N., Fraenkel D. G. Pathways of NADPH formation in Escherichia coli. J Biol Chem. 1977 May 25;252(10):3382–3391. [PubMed] [Google Scholar]
  5. Gerolimatos B., Hanson R. L. Repression of Escherichia coli pyridine nucleotide transhydrogenase by leucine. J Bacteriol. 1978 May;134(2):394–400. doi: 10.1128/jb.134.2.394-400.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanson R. L., Rose C. Effects of an insertion mutation in a locus affecting pyridine nucleotide transhydrogenase (pnt::Tn5) on the growth of Escherichia coli. J Bacteriol. 1980 Jan;141(1):401–404. doi: 10.1128/jb.141.1.401-404.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanson R. L., Rose C. Genetic mapping of a mutation affecting pyridine nucleotide transhydrogenase in Escherichia coli. J Bacteriol. 1979 Jun;138(3):783–787. doi: 10.1128/jb.138.3.783-787.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Houghton R. L., Fisher R. J., Sanadi D. R. Control of NAD(P)+-transhydrogenase levels in Escherichia coli. Arch Biochem Biophys. 1976 Oct;176(2):747–752. doi: 10.1016/0003-9861(76)90218-6. [DOI] [PubMed] [Google Scholar]
  9. Houghton R. L., Fisher R. J., Sanadi D. R. Energy-linked and energy-independent transhydrogenase activities in Escherichia coli vesicles. Biochim Biophys Acta. 1975 Jul 8;396(1):17–23. doi: 10.1016/0005-2728(75)90185-1. [DOI] [PubMed] [Google Scholar]
  10. Kane J. F., Deshpande K. L. Properties of glutamate dehydrogenase from Bacillus subtilis. Biochem Biophys Res Commun. 1979 Jun 13;88(3):761–767. doi: 10.1016/0006-291x(79)91473-6. [DOI] [PubMed] [Google Scholar]
  11. Kustu S., Burton D., Garcia E., McCarter L., McFarland N. Nitrogen control in Salmonella: regulation by the glnR and glnF gene products. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4576–4580. doi: 10.1073/pnas.76.9.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liang A., Houghton R. L. Structural aspects of the membrane-bound Escherichia colipyridine nucleotide transhydrogenase (EC 1.6.1.1). FEBS Lett. 1980 Jan 14;109(2):185–188. doi: 10.1016/0014-5793(80)81082-9. [DOI] [PubMed] [Google Scholar]
  13. McGivan J. D., Bradford N. M., Crompton M., Chappell J. B. Effect of L-leucine on the nitrogen metabolism of isolated rat liver mitochondria. Biochem J. 1973 May;134(1):209–215. doi: 10.1042/bj1340209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reeves H. C., Daumy G. O., Lin C. C., Houston M. NADP + -specific isocitrate dehydrogenase of Escherichia coli. I. Purification and characterization. Biochim Biophys Acta. 1972 Jan 20;258(1):27–39. doi: 10.1016/0005-2744(72)90964-3. [DOI] [PubMed] [Google Scholar]
  15. Rothstein D. M., Magasanik B. Isolation of Klebsiella aerogenes mutants cis-dominant for glutamine synthetase expression. J Bacteriol. 1980 Feb;141(2):671–679. doi: 10.1128/jb.141.2.671-679.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sakamoto N., Kotre A. M., Savageau M. A. Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol. 1975 Nov;124(2):775–783. doi: 10.1128/jb.124.2.775-783.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tyler B. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem. 1978;47:1127–1162. doi: 10.1146/annurev.bi.47.070178.005403. [DOI] [PubMed] [Google Scholar]
  18. Woolfolk C. A., Shapiro B., Stadtman E. R. Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys. 1966 Sep 26;116(1):177–192. doi: 10.1016/0003-9861(66)90026-9. [DOI] [PubMed] [Google Scholar]
  19. Zahl K. J., Rose C., Hanson R. L. Isolation and partial characterization of a mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase. Arch Biochem Biophys. 1978 Oct;190(2):598–602. doi: 10.1016/0003-9861(78)90315-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES