Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1997 Aug;63(2):181–187. doi: 10.1136/jnnp.63.2.181

Cortical and subcortical glucose metabolism in childhood epileptic encephalopathies

C Ferrie 1, P Marsden 1, M Maisey 1, R Robinson 1
PMCID: PMC2169669  PMID: 9285456

Abstract

OBJECTIVES— Nearly one third of children with cryptogenic epileptic encephalopathies have been reported to have focal cortical defects on 18fluorodeoxyglucose (FDG) PET. As diffuse cortical dysfunction and involvement of subcortical structures, particularly the thalami, is postulated to underlie the propensity to seizures in these conditions, the aim was to determine the frequency of bilateral and diffuse cortical metabolic defects and of subcortical metabolic abnormalities in the same patients.
METHODS—The interictal uptake of FDG was studied in 32 children with epileptic encephalopathies. Using a semiquantitative technique, the ratio of uptake in cortical regions and subcortical structures to that in the cerebellum was compared with that of age matched historical controls. Uptake more than 2 SD above ("hypermetabolic") or below ("hypometabolic") that of age matched controls was considered abnormal.
RESULTS—Diffusely abnormal cortical uptake (nearly always hypometabolic) occurred in almost two thirds of patients; in all but two of the remaining patients at least one cortical region showed significantly decreased uptake bilaterally. When analysed as age cohorts, the mean cortical:cerebellar FDG uptake was significantly lower than that of controls in all cortical regions (P<0.005). Ninety per cent of patients had evidence of relative thalamic hypometabolism and in each age group there was a significant reduction in relative thalamic FDG uptake compared with that of controls (P<0.005). In nine out of 11 patients with unilateral cortical hypometabolic defects thalamic FDG uptake was lower ipsilateral to the cortical abnormality.
CONCLUSIONS—Diffuse cortical dysfunction is common in the epileptic encephalopathies and may reflect the underlying cause of the condition or arise as a consequence of uncontrolled seizures. Altered thalamic glucose metabolism is further evidence of subcortical involvement in these conditions.



Full Text

The Full Text of this article is available as a PDF (104.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aicardi J. Epileptic encephalopathies of early childhood. Curr Opin Neurol Neurosurg. 1992 Jun;5(3):344–348. [PubMed] [Google Scholar]
  2. Bencze K. S., Troupin A., Prockop L. D. Reflex absence epilepsy. Epilepsia. 1988 Jan-Feb;29(1):48–51. doi: 10.1111/j.1528-1157.1988.tb05097.x. [DOI] [PubMed] [Google Scholar]
  3. Bergström M., Litton J., Eriksson L., Bohm C., Blomqvist G. Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J Comput Assist Tomogr. 1982 Apr;6(2):365–372. doi: 10.1097/00004728-198204000-00022. [DOI] [PubMed] [Google Scholar]
  4. Brooks R. A., Hatazawa J., Di Chiro G., Larson S. M., Fishbein D. S. Human cerebral glucose metabolism determined by positron emission tomography: a revisit. J Cereb Blood Flow Metab. 1987 Aug;7(4):427–432. doi: 10.1038/jcbfm.1987.86. [DOI] [PubMed] [Google Scholar]
  5. Camargo E. E., Szabo Z., Links J. M., Sostre S., Dannals R. F., Wagner H. N., Jr The influence of biological and technical factors on the variability of global and regional brain metabolism of 2-[18F]fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab. 1992 Mar;12(2):281–290. doi: 10.1038/jcbfm.1992.38. [DOI] [PubMed] [Google Scholar]
  6. Chugani H. T., Da Silva E., Chugani D. C. Infantile spasms: III. Prognostic implications of bitemporal hypometabolism on positron emission tomography. Ann Neurol. 1996 May;39(5):643–649. doi: 10.1002/ana.410390514. [DOI] [PubMed] [Google Scholar]
  7. Chugani H. T., Mazziotta J. C., Engel J., Jr, Phelps M. E. The Lennox-Gastaut syndrome: metabolic subtypes determined by 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography. Ann Neurol. 1987 Jan;21(1):4–13. doi: 10.1002/ana.410210104. [DOI] [PubMed] [Google Scholar]
  8. Chugani H. T., Phelps M. E., Mazziotta J. C. Positron emission tomography study of human brain functional development. Ann Neurol. 1987 Oct;22(4):487–497. doi: 10.1002/ana.410220408. [DOI] [PubMed] [Google Scholar]
  9. Chugani H. T., Shewmon D. A., Sankar R., Chen B. C., Phelps M. E. Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol. 1992 Feb;31(2):212–219. doi: 10.1002/ana.410310212. [DOI] [PubMed] [Google Scholar]
  10. Chugani H. T., Shewmon D. A., Shields W. D., Sankar R., Comair Y., Vinters H. V., Peacock W. J. Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia. 1993 Jul-Aug;34(4):764–771. doi: 10.1111/j.1528-1157.1993.tb00459.x. [DOI] [PubMed] [Google Scholar]
  11. Chugani H. T., Shields W. D., Shewmon D. A., Olson D. M., Phelps M. E., Peacock W. J. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol. 1990 Apr;27(4):406–413. doi: 10.1002/ana.410270408. [DOI] [PubMed] [Google Scholar]
  12. Donat J. F. The age-dependent epileptic encephalopathies. J Child Neurol. 1992 Jan;7(1):7–21. doi: 10.1177/088307389200700102. [DOI] [PubMed] [Google Scholar]
  13. Ferrie C. D., Maisey M., Cox T., Polkey C., Barrington S. F., Panayiotopoulos C. P., Robinson R. O. Focal abnormalities detected by 18FDG PET in epileptic encephalopathies. Arch Dis Child. 1996 Aug;75(2):102–107. doi: 10.1136/adc.75.2.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foster N. L., VanDerSpek A. F., Aldrich M. S., Berent S., Hichwa R. H., Sackellares J. C., Gilman S., Agranoff B. W. The effect of diazepam sedation on cerebral glucose metabolism in Alzheimer's disease as measured using positron emission tomography. J Cereb Blood Flow Metab. 1987 Aug;7(4):415–420. doi: 10.1038/jcbfm.1987.84. [DOI] [PubMed] [Google Scholar]
  15. Grady C. L., Berg G., Carson R. E., Daube-Witherspoon M. E., Friedland R. P., Rapoport S. I. Quantitative comparison of cerebral glucose metabolic rates from two positron emission tomographs. J Nucl Med. 1989 Aug;30(8):1386–1392. [PubMed] [Google Scholar]
  16. Gur R. C., Sussman N. M., Alavi A., Gur R. E., Rosen A. D., O'Connor M., Goldberg H. I., Greenberg J. H., Reivich M. Positron emission tomography in two cases of childhood epileptic encephalopathy (Lennox-Gastaut syndrome). Neurology. 1982 Oct;32(10):1191–1194. doi: 10.1212/wnl.32.10.1191. [DOI] [PubMed] [Google Scholar]
  17. Henry T. R., Mazziotta J. C., Engel J., Jr, Christenson P. D., Zhang J. X., Phelps M. E., Kuhl D. E. Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cereb Blood Flow Metab. 1990 Sep;10(5):748–757. doi: 10.1038/jcbfm.1990.128. [DOI] [PubMed] [Google Scholar]
  18. Hoffman E. J., Huang S. C., Phelps M. E. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979 Jun;3(3):299–308. doi: 10.1097/00004728-197906000-00001. [DOI] [PubMed] [Google Scholar]
  19. Kessler R. M., Ellis J. R., Jr, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984 Jun;8(3):514–522. doi: 10.1097/00004728-198406000-00028. [DOI] [PubMed] [Google Scholar]
  20. Kumar A., Braun A., Schapiro M., Grady C., Carson R., Herscovitch P. Cerebral glucose metabolic rates after 30 and 45 minute acquisitions: a comparative study. J Nucl Med. 1992 Dec;33(12):2103–2105. [PubMed] [Google Scholar]
  21. Kuwert T., Ganslandt T., Jansen P., Jülicher F., Lange H., Herzog H., Scholz D., Aulich A., Feinendegen L. E. Influence of size of regions of interest on PET evaluation of caudate glucose consumption. J Comput Assist Tomogr. 1992 Sep-Oct;16(5):789–794. doi: 10.1097/00004728-199209000-00022. [DOI] [PubMed] [Google Scholar]
  22. Kuwert T., Sures T., Herzog H., Loken M., Hennerici M., Langen K. J., Feinendegen L. E. On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography. J Neural Transm Suppl. 1992;37:53–66. doi: 10.1007/978-3-7091-9209-2_5. [DOI] [PubMed] [Google Scholar]
  23. Larson K. B., Markham J., Raichle M. E. Tracer-kinetic models for measuring cerebral blood flow using externally detected radiotracers. J Cereb Blood Flow Metab. 1987 Aug;7(4):443–463. doi: 10.1038/jcbfm.1987.88. [DOI] [PubMed] [Google Scholar]
  24. Leiderman D. B., Balish M., Bromfield E. B., Theodore W. H. Effect of valproate on human cerebral glucose metabolism. Epilepsia. 1991 May-Jun;32(3):417–422. doi: 10.1111/j.1528-1157.1991.tb04671.x. [DOI] [PubMed] [Google Scholar]
  25. Maeda N., Watanabe K., Negoro T., Aso K., Ohki T., Ito K., Kato T. Evolutional changes of cortical hypometabolism in West's syndrome. Lancet. 1994 Jun 25;343(8913):1620–1623. doi: 10.1016/s0140-6736(94)93065-1. [DOI] [PubMed] [Google Scholar]
  26. Miyauchi T., Nomura Y., Ohno S., Kishimoto H., Matsushita M. Positron emission tomography in three cases of Lennox-Gastaut syndrome. Jpn J Psychiatry Neurol. 1988 Dec;42(4):795–804. doi: 10.1111/j.1440-1819.1988.tb01168.x. [DOI] [PubMed] [Google Scholar]
  27. Renier W. O., Gabreëls F. J., Jaspar H. H. Morphological and biochemical analysis of a brain biopsy in a case of idiopathic Lennox-Gastaut syndrome. Epilepsia. 1988 Sep-Oct;29(5):644–649. doi: 10.1111/j.1528-1157.1988.tb03776.x. [DOI] [PubMed] [Google Scholar]
  28. Sadzot B., Debets R., Maquet P., Comar C., Franck G. PET studies of patients with partial epilepsy: visual interpretation vs. semi-quantification/quantification. Acta Neurol Scand Suppl. 1994;152:175–178. doi: 10.1111/j.1600-0404.1994.tb05216.x. [DOI] [PubMed] [Google Scholar]
  29. Strother S. C., Liow J. S., Moeller J. R., Sidtis J. J., Dhawan V. J., Rottenberg D. A. Absolute quantitation in neurological PET: do we need it? J Cereb Blood Flow Metab. 1991 Mar;11(2):A3–16. doi: 10.1038/jcbfm.1991.31. [DOI] [PubMed] [Google Scholar]
  30. Theodore W. H., DiChiro G., Margolin R., Fishbein D., Porter R. J., Brooks R. A. Barbiturates reduce human cerebral glucose metabolism. Neurology. 1986 Jan;36(1):60–64. doi: 10.1212/wnl.36.1.60. [DOI] [PubMed] [Google Scholar]
  31. Theodore W. H., Fishbein D., Dietz M., Baldwin P., Deitz M. Complex partial seizures: cerebellar metabolism. Epilepsia. 1987 Jul-Aug;28(4):319–323. doi: 10.1111/j.1528-1157.1987.tb03650.x. [DOI] [PubMed] [Google Scholar]
  32. Theodore W. H., Rose D., Patronas N., Sato S., Holmes M., Bairamian D., Porter R. J., Di Chiro G., Larson S., Fishbein D. Cerebral glucose metabolism in the Lennox-Gastaut syndrome. Ann Neurol. 1987 Jan;21(1):14–21. doi: 10.1002/ana.410210105. [DOI] [PubMed] [Google Scholar]
  33. Yanai K., Iinuma K., Matsuzawa T., Ito M., Miyabayashi S., Narisawa K., Ido T., Yamada K., Tada K. Cerebral glucose utilization in pediatric neurological disorders determined by positron emission tomography. Eur J Nucl Med. 1987;13(6):292–296. doi: 10.1007/BF00256553. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES