Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1997 Aug;63(2):228–234. doi: 10.1136/jnnp.63.2.228

Autonomic effects of selegiline: possible cardiovascular toxicity in Parkinson's disease

A Churchyard 1, C Mathias 1, P Boonkongchuen 1, A Lees 1
PMCID: PMC2169684  PMID: 9285463

Abstract

OBJECTIVES—The United Kingdom Parkinson's Disease Research Group (UKPDRG) trial found an increased mortality in patients with Parkinson's disease randomised to receive selegiline (10 mg/day) and levodopa compared with those taking levodopa alone. Unwanted effects of selegiline on cardiovascular regulation have been investigated as a potential cause for the unexpected mortality finding of the UKPDRG trial.
METHODS—The cardiovascular responses to a range of physiological stimuli, including standing and head up tilt, were studied in patients with Parkinson's disease receiving levodopa alone and a matched group on levodopa and selegiline.
RESULTS—Head up tilt caused selective and often severe orthostatic hypotension in nine of 16 patients taking selegiline and levodopa, but was without effect on nine patients receiving levodopa alone. Two patients taking selegiline lost consciousness with unrecordable blood pressures and a further four had severe symptomatic hypotension. The normal protective rises in heart rate and plasma noradrenaline were impaired. The abnormal response to head up tilt was reversed by discontinuation of selegiline. Drug withdrawal caused a pronounced deterioration in motor function in 13 of the 16 patients taking selegiline.
CONCLUSION—Therapy with selegiline and levodopa in combination may be associated with severe orthostatic hypotension not attributable to levodopa alone. Selegiline also has pronounced symptomatic motor effects in advanced Parkinson's disease. The possibilities that these cardiovascular and motor findings might be due either to non-selective inhibition of monoamine oxidase or to amphetamine and met-amphetamine are discussed.



Full Text

The Full Text of this article is available as a PDF (124.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. E., Girdwood A. C., Wilson J. A. Effect of adding selegeline to levodopa in early, mild Parkinson's disease. Stopping selegeline may lead to problems for patients. BMJ. 1996 Mar 16;312(7032):702–705. doi: 10.1136/bmj.312.7032.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cavanaugh J. H., Griffith J. D., Oates J. A. Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man. Clin Pharmacol Ther. 1970 Sep-Oct;11(5):656–664. doi: 10.1002/cpt1970115656. [DOI] [PubMed] [Google Scholar]
  3. Cheng H. C., Long J. P., Barfknecht C. F., Nichols D. E. Cardiovascular effects of 2, 5-dimethoxy-4-methylamphetamine (DOM, STP). J Pharmacol Exp Ther. 1973 Aug;186(2):345–354. [PubMed] [Google Scholar]
  4. Ekstedt B., Magyar K., Knoll J. Does the B form selective monoamine oxidase inhibitor lose selectivity by long term treatment? Biochem Pharmacol. 1979 Mar 15;28(6):919–923. doi: 10.1016/0006-2952(79)90376-9. [DOI] [PubMed] [Google Scholar]
  5. Engberg G., Elebring T., Nissbrandt H. Deprenyl (selegiline), a selective MAO-B inhibitor with active metabolites; effects on locomotor activity, dopaminergic neurotransmission and firing rate of nigral dopamine neurons. J Pharmacol Exp Ther. 1991 Nov;259(2):841–847. [PubMed] [Google Scholar]
  6. Fozard J. R., Zreika M., Robin M., Palfreyman M. G. The functional consequences of inhibition of monoamine oxidase type B: comparison of the pharmacological properties of L-deprenyl and MDL 72145. Naunyn Schmiedebergs Arch Pharmacol. 1985 Nov;331(2-3):186–193. doi: 10.1007/BF00634237. [DOI] [PubMed] [Google Scholar]
  7. Gai W. P., Geffen L. B., Denoroy L., Blessing W. W. Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson's disease. Ann Neurol. 1993 Apr;33(4):357–367. doi: 10.1002/ana.410330405. [DOI] [PubMed] [Google Scholar]
  8. Gelowitz D. L., Richardson J. S., Wishart T. B., Yu P. H., Lai C. T. Chronic L-deprenyl or L-amphetamine: equal cognitive enhancement, unequal MAO inhibition. Pharmacol Biochem Behav. 1994 Jan;47(1):41–45. doi: 10.1016/0091-3057(94)90109-0. [DOI] [PubMed] [Google Scholar]
  9. Gibb W. R., Lees A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry. 1988 Jun;51(6):745–752. doi: 10.1136/jnnp.51.6.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gill J. R., Jr, Masson D. T., Bartter F. C. Effects of hydroxyamphetamine (paredrine) on the function of the sympathetic nervous system in normotensive subjects. J Pharmacol Exp Ther. 1967 Feb;155(2):288–295. [PubMed] [Google Scholar]
  11. Karoum F., Chuang L. W., Eisler T., Calne D. B., Liebowitz M. R., Quitkin F. M., Klein D. F., Wyatt R. J. Metabolism of (-) deprenyl to amphetamine and methamphetamine may be responsible for deprenyl's therapeutic benefit: a biochemical assessment. Neurology. 1982 May;32(5):503–509. doi: 10.1212/wnl.32.5.503. [DOI] [PubMed] [Google Scholar]
  12. Knoll J. The possible mechanisms of action of (-)deprenyl in Parkinson's disease. J Neural Transm. 1978;43(3-4):177–198. doi: 10.1007/BF01246955. [DOI] [PubMed] [Google Scholar]
  13. Kopp N., Denoroy L., Tommasi M., Gay N., Chazot G., Renaud B. Increase in noradrenaline-synthesizing enzyme activity in medulla oblongata in Parkinson's disease. Acta Neuropathol. 1982;56(1):17–21. doi: 10.1007/BF00691177. [DOI] [PubMed] [Google Scholar]
  14. Lees A. J. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson's disease. Parkinson's Disease Research Group of the United Kingdom. BMJ. 1995 Dec 16;311(7020):1602–1607. doi: 10.1136/bmj.311.7020.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lees A. J., Shaw K. M., Kohout L. J., Stern G. M., Elsworth J. D., Sandler M., Youdim M. B. Deprenyl in Parkinson's disease. Lancet. 1977 Oct 15;2(8042):791–795. doi: 10.1016/s0140-6736(77)90725-5. [DOI] [PubMed] [Google Scholar]
  16. Martin W. R., Sloan J. W., Sapira J. D., Jasinski D. R. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther. 1971 Mar-Apr;12(2):245–258. doi: 10.1002/cpt1971122part1245. [DOI] [PubMed] [Google Scholar]
  17. Mathias C. J., Bannister R. B., Cortelli P., Heslop K., Polak J. M., Raimbach S., Springall D. R., Watson L. Clinical, autonomic and therapeutic observations in two siblings with postural hypotension and sympathetic failure due to an inability to synthesize noradrenaline from dopamine because of a deficiency of dopamine beta hydroxylase. Q J Med. 1990 Jun;75(278):617–633. [PubMed] [Google Scholar]
  18. McDaniel K. D. Clinical pharmacology of monoamine oxidase inhibitors. Clin Neuropharmacol. 1986;9(3):207–234. doi: 10.1097/00002826-198606000-00001. [DOI] [PubMed] [Google Scholar]
  19. Montastruc J. L., Senard J. M., Rascol O., Rascol A. Autonomic nervous system dysfunction and adrenoceptor regulation in Parkinson's disease. Clinical and pharmacological consequences. Adv Neurol. 1996;69:377–381. [PubMed] [Google Scholar]
  20. Ohama E., Ikuta F. Parkinson's disease: distribution of Lewy bodies and monoamine neuron system. Acta Neuropathol. 1976 Apr 26;34(4):311–319. doi: 10.1007/BF00696560. [DOI] [PubMed] [Google Scholar]
  21. Okuda C., Segal D. S., Kuczenski R. Deprenyl alters behavior and caudate dopamine through an amphetamine-like action. Pharmacol Biochem Behav. 1992 Dec;43(4):1075–1080. doi: 10.1016/0091-3057(92)90484-w. [DOI] [PubMed] [Google Scholar]
  22. Olanow C. W. A rationale for monoamine oxidase inhibition as neuroprotective therapy for Parkinson's disease. Mov Disord. 1993;8 (Suppl 1):S1–S7. doi: 10.1002/mds.870080503. [DOI] [PubMed] [Google Scholar]
  23. Parkes J. D., Tarsy D., Marsden C. D., Bovill K. T., Phipps J. A., Rose P., Asselman P. Amphetamines in the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 1975 Mar;38(3):232–237. doi: 10.1136/jnnp.38.3.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Preston K. L., Wagner G. C., Schuster C. R., Seiden L. S. Long-term effects of repeated methylamphetamine administration on monoamine neurons in the rhesus monkey brain. Brain Res. 1985 Jul 15;338(2):243–248. doi: 10.1016/0006-8993(85)90153-2. [DOI] [PubMed] [Google Scholar]
  25. ROSENBERG D. E., WOLBACH A. B., Jr, MINER E. J., ISBELL H. OBSERVATIONS ON DIRECT AND CROSS TOLERANCE WITH LSD AND D-AMPHETAMINE IN MAN. Psychopharmacologia. 1963 Oct 24;5:1–15. doi: 10.1007/BF00405570. [DOI] [PubMed] [Google Scholar]
  26. Rae-Grant A., Young G. B., Spence J. D. Monoamine oxidase inhibitors and Sinemet in Shy-Drager syndrome. Neurology. 1985 Jul;35(7):1085–1086. doi: 10.1212/wnl.35.7.1085-a. [DOI] [PubMed] [Google Scholar]
  27. Rangno R. E., Kaufmann J. S., Cavanaugh J. H., Island D., Watson J. T., Oates J. Effects of a false neurotransmitter, p-hydroxynorephedrine, on the function of adrenergic neurons in hypertensive patients. J Clin Invest. 1973 Apr;52(4):952–960. doi: 10.1172/JCI107260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reynolds G. P., Elsworth J. D., Blau K., Sandler M., Lees A. J., Stern G. M. Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol. 1978 Dec;6(6):542–544. doi: 10.1111/j.1365-2125.1978.tb00883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ricaurte G. A., Seiden L. S., Schuster C. R. Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res. 1984 Jun 15;303(2):359–364. doi: 10.1016/0006-8993(84)91221-6. [DOI] [PubMed] [Google Scholar]
  30. Riederer P., Youdim M. B., Rausch W. D., Birkmayer W., Jellinger K., Seemann D. On the mode of action of L-deprenyl in the human central nervous system. J Neural Transm. 1978;43(3-4):217–226. doi: 10.1007/BF01246958. [DOI] [PubMed] [Google Scholar]
  31. Simpson L. L. Evidence that deprenyl, A type B monoamine oxidase inhibitor, is an indirectly acting sympathomimetic amine. Biochem Pharmacol. 1978;27(11):1591–1595. doi: 10.1016/0006-2952(78)90490-2. [DOI] [PubMed] [Google Scholar]
  32. Sprangers R. L., Wesseling K. H., Imholz A. L., Imholz B. P., Wieling W. Initial blood pressure fall on stand up and exercise explained by changes in total peripheral resistance. J Appl Physiol (1985) 1991 Feb;70(2):523–530. doi: 10.1152/jappl.1991.70.2.523. [DOI] [PubMed] [Google Scholar]
  33. Sunderland T., Mueller E. A., Cohen R. M., Jimerson D. C., Pickar D., Murphy D. L. Tyramine pressor sensitivity changes during deprenyl treatment. Psychopharmacology (Berl) 1985;86(4):432–437. doi: 10.1007/BF00427904. [DOI] [PubMed] [Google Scholar]
  34. Wakabayashi K., Takahashi H., Ohama E., Ikuta F. Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 1990;79(6):581–583. doi: 10.1007/BF00294234. [DOI] [PubMed] [Google Scholar]
  35. Waldmeier P. C., Felner A. E. Deprenil: loss of selectivity for inhibition of B-type MAO after repeated treatment. Biochem Pharmacol. 1978 Mar 1;27(5):801–802. doi: 10.1016/0006-2952(78)90525-7. [DOI] [PubMed] [Google Scholar]
  36. Wilson J. M., Kalasinsky K. S., Levey A. I., Bergeron C., Reiber G., Anthony R. M., Schmunk G. A., Shannak K., Haycock J. W., Kish S. J. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996 Jun;2(6):699–703. doi: 10.1038/nm0696-699. [DOI] [PubMed] [Google Scholar]
  37. Woolverton W. L., Ricaurte G. A., Forno L. S., Seiden L. S. Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res. 1989 May 1;486(1):73–78. doi: 10.1016/0006-8993(89)91279-1. [DOI] [PubMed] [Google Scholar]
  38. Yu P. H., Lai C. T., Boulton A. A. Effect of adding selegeline to levodopa in early, mild Parkinson's disease. Selegeline may be toxic in presence of increased dopamine concentrations. BMJ. 1996 Mar 16;312(7032):703–705. doi: 10.1136/bmj.312.7032.703b. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES