Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 May;146(2):435–443. doi: 10.1128/jb.146.2.435-443.1981

Effect of metabolic inhibitors on entry of exogenous deoxyribonucleic acid into Ca2+-treated Escherichia coli cells.

A G Sabelnikov, I V Domaradsky
PMCID: PMC216984  PMID: 7012127

Abstract

The effect of various metabolic inhibitors (carbonylcyanid-m-chlorophenylhydrazone, nigericin, valinomycin, dicyclocarbodiimide, arsenate, NaF, etc.) and lipid-soluble synthetic ions (tetraphenylphosphonium bromide and tetraphenylboron sodium) on deoxyribonucleic acid (DNA) entry during transformation of Ca2+-treated Escherichia coli cells with plasmid DNA and on cell viability was investigated. In contrast to intact cells, Ca2+-treated E. coli cells were permeable to nigericin, valinomycin, and the other drugs tested. The inhibitors differentially affected [14C]proline active transport, and whereas some drugs inhibited transformation, the effects did not correlate with the effects on transport. The most potent inhibitors of transformation were nigericin, dicyclocarbodiimide, and tetraphenylboron sodium. Carbonylcyanid-m-chlorophenylhydrazone, tetraphenylphosphonium bromide, and valinomycin were relatively inactive. Tetraphenylboron sodium- and nigericin-treated cells bound were plasmid [14C]DNA in the deoxyribonuclease-resistant form than the control and other sample cells. Nevertheless, te penetration of exogenous plasmid DNA into the cell was greatly reduced, at least in case of nigericin. Unlike the other drugs, nigericin and dicyclocarbodiimide drastically affected the cell viability, the former within very short times of interaction. It is concluded that proton motive force does not play any significant role in DNA entry into Ca2+-treated E. coli cells. The results also suggest that adenosine 5'-triphosphate is not required for DNA entry either. The inhibitory effect of certain drugs is discussed in terms of structural perturbations induced by the drugs in cell envelope membranes.

Full text

PDF
435

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amar A., Rottem S., Razin S. Disposition of membrane proteins as affected by changes in the electrochemical gradient across Mycoplasma membranes. Biochem Biophys Res Commun. 1978 Sep 29;84(2):306–312. doi: 10.1016/0006-291x(78)90171-7. [DOI] [PubMed] [Google Scholar]
  2. Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974 Dec 25;249(24):7747–7755. [PubMed] [Google Scholar]
  3. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cosloy S. D., Oishi M. The nature of the transformation process in Escherichia coli K12. Mol Gen Genet. 1973 Jul 31;124(1):1–10. doi: 10.1007/BF00267159. [DOI] [PubMed] [Google Scholar]
  5. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  6. Dürr M., Boller T., Wiemken A. Polybase induced lysis of yeast spheroplasts. A new gentle method for preparation of vacuoles. Arch Microbiol. 1975 Nov 7;105(3):319–327. doi: 10.1007/BF00447152. [DOI] [PubMed] [Google Scholar]
  7. Hancock R. W., Braun V. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and phi80 to Escherichia coli. J Bacteriol. 1976 Feb;125(2):409–415. doi: 10.1128/jb.125.2.409-415.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Helgerson S. L., Cramer W. A. Changes in E. coli cell envelope structure caused by uncouplers of active transport and colicin E1. J Supramol Struct. 1976;5(3):291–308. doi: 10.1002/jss.400050304. [DOI] [PubMed] [Google Scholar]
  9. Klein W. L., Boyer P. D. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [PubMed] [Google Scholar]
  10. Kobayashi H., Kin E., Anraku Y. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. J Biochem. 1974 Aug;76(2):251–261. doi: 10.1093/oxfordjournals.jbchem.a130567. [DOI] [PubMed] [Google Scholar]
  11. Komor E., Weber H., Tanner W. Greatly decreased susceptibility of nonmetabolizing cells towards detergents. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1814–1818. doi: 10.1073/pnas.76.4.1814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Labedan B., Goldberg E. B. Requirement for membrane potential in injection of phage T4 DNA. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4669–4673. doi: 10.1073/pnas.76.9.4669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  14. Mehlhorn R. J., Packer L. Inactivation and reactivation of mitochondrial respiration by charged detergents. Biochim Biophys Acta. 1976 Mar 12;423(3):382–397. doi: 10.1016/0005-2728(76)90195-x. [DOI] [PubMed] [Google Scholar]
  15. Norgard M. V., Keem K., Monahan J. J. Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA. Gene. 1978 Jul;3(4):279–292. doi: 10.1016/0378-1119(78)90038-0. [DOI] [PubMed] [Google Scholar]
  16. Olson V. L., Hansing R. L., McClary D. O. The role of metabolic energy in the lethal action of basic proteins on Candida albicans. Can J Microbiol. 1977 Feb;23(2):166–174. doi: 10.1139/m77-024. [DOI] [PubMed] [Google Scholar]
  17. Padan E., Zilberstein D., Rottenberg H. The proton electrochemical gradient in Escherichia coli cells. Eur J Biochem. 1976 Apr 1;63(2):533–541. doi: 10.1111/j.1432-1033.1976.tb10257.x. [DOI] [PubMed] [Google Scholar]
  18. Quintanilha A. T., Packer L. Surface potential changes on energization of the mitochondrial inner membrane. FEBS Lett. 1977 Jun 15;78(2):161–165. doi: 10.1016/0014-5793(77)80296-2. [DOI] [PubMed] [Google Scholar]
  19. Sabelnikov A. G., Avdeeva A. V., Ilyashenko Enhanced uptake of donor DNA by Ca2+ treated Escherichia coli cells. Mol Gen Genet. 1975 Jul 10;138(4):351–358. doi: 10.1007/BF00264805. [DOI] [PubMed] [Google Scholar]
  20. Sabelnikov A. G., Domaradsky I. V. Proton conductor vs. cold in induction of Ca(2+)-dependent competence in Escherichia coli. Mol Gen Genet. 1979;172(3):313–317. doi: 10.1007/BF00271731. [DOI] [PubMed] [Google Scholar]
  21. Schäfer G., Rowohl-Quisthoudt G. Influence of surface potentials on the mitochondrial H+ pump and on lipid-phase transitions. J Bioenerg. 1976 Apr;8(2):73–81. doi: 10.1007/BF01558629. [DOI] [PubMed] [Google Scholar]
  22. Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
  23. Strike P., Humphreys G. O., Roberts R. J. Nature of transforming deoxyribonucleic acid in calcium-treated Escherichia coli. J Bacteriol. 1979 Jun;138(3):1033–1035. doi: 10.1128/jb.138.3.1033-1035.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taketo A. Sensitivity of Escherichia coli to viral nucleic acid. 8. Idiosyncrasy of Ca2+-dependent competence for DNA. J Biochem. 1974 Apr;75(4):895–904. doi: 10.1093/oxfordjournals.jbchem.a130463. [DOI] [PubMed] [Google Scholar]
  25. Tarshis M. A., Kapitanov A. B. Symport H+/carbohydrate transport into Acholeplasma laidlawii cells. FEBS Lett. 1978 May 1;89(1):73–77. doi: 10.1016/0014-5793(78)80525-0. [DOI] [PubMed] [Google Scholar]
  26. Wackernagel W. An improved spheroplast assay for lambda-DNA and the influence of the bacterial genotype on the transfection rate. Virology. 1972 Apr;48(1):94–103. doi: 10.1016/0042-6822(72)90117-1. [DOI] [PubMed] [Google Scholar]
  27. Weinbach E. C., Garbus J. Structural changes in mitochondria induced by uncoupling reagents. The response to proteolytic enzymes. Biochem J. 1968 Feb;106(3):711–717. doi: 10.1042/bj1060711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weston A., Humphreys G. O., Brown M. G., Saunders J. R. Simultaneous transformation of Escherichia coli by pairs of compatible and incompatible plasmid DNA molecules. Mol Gen Genet. 1979 Apr 17;172(1):113–118. doi: 10.1007/BF00276222. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES