Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 May;146(2):453–459. doi: 10.1128/jb.146.2.453-459.1981

Multiple forms of alkaline phosphatase from Escherichia coli cells with repressed and derepressed biosynthesis of the enzyme.

M A Nesmeyanova, O B Motlokh, M N Kolot, I S Kulaev
PMCID: PMC216986  PMID: 7012129

Abstract

Isolation of multiple forms of alkaline phosphatase from Escherichia coli cells with repressed and derepressed biosynthesis of the enzyme is reported. Three enzyme forms were isolated from cells with derepressed synthesis, and one form was isolated from cells with repressed enzyme synthesis. The multiple enzyme forms did not differ in pH optimum, thermostability, or the degree of inhibition with orthophosphate; however, they did differ in the relative rate of hydrolysis of different substrates. The addition of substrates to the cells during enzyme derepression resulted in changes of the ratio of the multiple forms.

Full text

PDF
453

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloch W., Schlesinger M. J. Kinetics of substrate hydrolysis by molecular variants of Escherichia coli alkaline phosphatase. J Biol Chem. 1974 Mar 25;249(6):1760–1768. [PubMed] [Google Scholar]
  2. Bosron W. F., Kennedy F. S., Vallee B. L. Zinc and magnesium content of alkaline phosphatase from Escherichia coli. Biochemistry. 1975 May 20;14(10):2275–2282. doi: 10.1021/bi00681a036. [DOI] [PubMed] [Google Scholar]
  3. Bosron W. F., Vallee B. L. Effect of phosphate on multiple forms of Escherechia coli alkaline phosphatase. Biochem Biophys Res Commun. 1975 Sep 16;66(2):809–813. doi: 10.1016/0006-291x(75)90581-1. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. GAREN A., GAREN S. Complementation in vivo between structural mutants of alkaline phosphatase from E. coli. J Mol Biol. 1963 Jul;7:13–22. doi: 10.1016/s0022-2836(63)80015-7. [DOI] [PubMed] [Google Scholar]
  6. Irie M., Yabuta A., Kimura K., Shindo Y., Tomita K. Distribution and properties of alkaline pyrophosphatases of rat liver. J Biochem. 1970 Jan;67(1):47–58. doi: 10.1093/oxfordjournals.jbchem.a129233. [DOI] [PubMed] [Google Scholar]
  7. Kelley P. M., Neumann P. A., Shriefer K., Cancedda F., Schlesinger M. J., Bradshaw R. A. Amino acid sequence of Escherichia coli alkaline phosphatase. Amino- and carboxyl-terminal sequences and variations between two isozymes. Biochemistry. 1973 Aug 28;12(18):3499–3503. doi: 10.1021/bi00742a023. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lazdunski C., Lazdunski M. Les isophosphatases alcalines d' Escherichia coli. Séparation, propriétés cinétiques et structurales. Biochim Biophys Acta. 1967 Oct 23;147(2):280–288. [PubMed] [Google Scholar]
  10. Nakata A., Shinagawa H., Kawamata J. Inhibition of alkaline phosphatase isozyme conversion by protease inhibitors in Escherichia coli K-12. FEBS Lett. 1979 Sep 1;105(1):147–150. doi: 10.1016/0014-5793(79)80905-9. [DOI] [PubMed] [Google Scholar]
  11. Nakata A., Yamaguchi M., Izutani K., Amemura M. Escherichia coli mutants deficient in the production of alkaline phosphatase isozymes. J Bacteriol. 1978 Apr;134(1):287–294. doi: 10.1128/jb.134.1.287-294.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Natori S., Garen A. Molecular heterogeneity in the amino-terminal region of alkaline phosphatase. J Mol Biol. 1970 May 14;49(3):577–588. doi: 10.1016/0022-2836(70)90282-2. [DOI] [PubMed] [Google Scholar]
  13. Piggot P. J., Sklar M. D., Gorini L. Ribosomal alterations controlling alkaline phosphatase isozymes in Escherichia coli. J Bacteriol. 1972 Apr;110(1):291–299. doi: 10.1128/jb.110.1.291-299.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schlesinger M. J., Andersen L. Multiple molecular forms of the alkaline phosphatase of Escherichia coli. Ann N Y Acad Sci. 1968 Jun 14;151(1):159–170. doi: 10.1111/j.1749-6632.1968.tb11886.x. [DOI] [PubMed] [Google Scholar]
  15. Sekizawa J., Fukui S. Isolation, solubilization and reaggregation of outer membrane of Escherichia coli. Biochim Biophys Acta. 1973 Apr 25;307(1):104–117. doi: 10.1016/0005-2736(73)90029-1. [DOI] [PubMed] [Google Scholar]
  16. Simpson R. T., Vallee B. L., Tait G. H. Alkaline phosphatase of Escherichia coli. Composition. Biochemistry. 1968 Dec;7(12):4336–4342. doi: 10.1021/bi00852a028. [DOI] [PubMed] [Google Scholar]
  17. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  18. WEIL-MALHERBE H., GREEN R. H. The catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. Biochem J. 1951 Aug;49(3):286–292. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES