Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 May;146(2):460–466. doi: 10.1128/jb.146.2.460-466.1981

Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii.

E E Groseclose, D W Ribbons
PMCID: PMC216987  PMID: 7217008

Abstract

We present evidence to document a third pathway for the microbial catabolism of resorcinol. Resorcinol is converted to pyrogallol by resorcinol-grown cells of Azotobacter vinelandii. Pyrogallol is the substrate for one of two ring cleavage enzymes induced by growth with resorcinol. Oxalocrotonate, CO2, pyruvate, and acetaldehyde have been identified as products of pyrogallol oxidation catalyzed by extracts of resorcinol-grown cells. The enzymes pyrogallol 1,2-dioxygenase, oxalocrotonate tautomerase (isomerase), oxalocrotonate decarboxylase, and vinylpyruvate hydratase are present in extracts from resorcinol-grown cells but not in succinate-grown cells.

Full text

PDF
460

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayly R. C., Dagley S. Oxoenoic acids as metabolites in the bacterial degradation of catechols. Biochem J. 1969 Feb;111(3):303–307. doi: 10.1042/bj1110303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):985–998. doi: 10.1128/jb.125.3.985-998.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman P. J., Ribbons D. W. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida. J Bacteriol. 1976 Mar;125(3):975–984. doi: 10.1128/jb.125.3.975-984.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Claus D., Hempel W. Specific substrates for isolation and differentiation of Azotobacter vinelandii. Arch Mikrobiol. 1970;73(1):90–96. doi: 10.1007/BF00409955. [DOI] [PubMed] [Google Scholar]
  6. Collinsworth W. L., Chapman P. J., Dagley S. Stereospecific enzymes in the degradation of aromatic compounds by pseudomonas putida. J Bacteriol. 1973 Feb;113(2):922–931. doi: 10.1128/jb.113.2.922-931.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAGLEY S., CHAPMAN P. J., GIBSON D. T., WOOD J. M. DEGRADATION OF THE BENZENE NUCLEUS BY BACTERIA. Nature. 1964 May 23;202:775–778. doi: 10.1038/202775a0. [DOI] [PubMed] [Google Scholar]
  8. Dagley S. Determinants of biodegradability. Q Rev Biophys. 1978 Nov;11(4):577–602. doi: 10.1017/s0033583500005679. [DOI] [PubMed] [Google Scholar]
  9. DeFrank J. J., Ribbons D. W. p-Cymene pathway in Pseudomonas putida: ring cleavage of 2,3-dihydroxy-p-cumate and subsequent reactions. J Bacteriol. 1977 Mar;129(3):1365–1374. doi: 10.1128/jb.129.3.1365-1374.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dennis D. A., Chapman P. J., Dagley S. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission. J Bacteriol. 1973 Jan;113(1):521–523. doi: 10.1128/jb.113.1.521-523.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feist C. F., Hegeman G. D. Regulation of the meta cleavage pathway for benzoate oxidation by Pseudomonas putida. J Bacteriol. 1969 Nov;100(2):1121–1123. doi: 10.1128/jb.100.2.1121-1123.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujiwara M., Golovleva L. A., Saeki Y., Nozaki M., Hayaishi O. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J Biol Chem. 1975 Jul 10;250(13):4848–4855. [PubMed] [Google Scholar]
  13. Gaal A., Neujahr H. Y. Metabolism of phenol and resorcinol in Trichosporon cutaneum. J Bacteriol. 1979 Jan;137(1):13–21. doi: 10.1128/jb.137.1.13-21.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardisson C., Sala-Trepat J. M., Stanier R. Y. Pathways for the oxidation of aromatic compounds by Azotobacter. J Gen Microbiol. 1969 Nov;59(1):1–11. doi: 10.1099/00221287-59-1-1. [DOI] [PubMed] [Google Scholar]
  15. Hou C. T., Patel R., Lillard M. O. Extradiol cleavage of 3-methylcatechol by catechol 1,2-dioxygenase from various microorganisms. Appl Environ Microbiol. 1977 Mar;33(3):725–727. doi: 10.1128/aem.33.3.725-727.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Högn T., Jaenicke L. Benzene metabolism of Moraxella species. Eur J Biochem. 1972 Oct;30(2):369–375. doi: 10.1111/j.1432-1033.1972.tb02107.x. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. NAKAGAWA H., INOUE H., TAKEDA Y. CHARACTERISTICS OF CATECHOL OXYGENASE FROM BREVIBACTERIUM FUSCUM. J Biochem. 1963 Jul;54:65–74. doi: 10.1093/oxfordjournals.jbchem.a127748. [DOI] [PubMed] [Google Scholar]
  19. Saeki Y., Nozaki M., Senoh S. Cleavage of pyrogallol by non-heme iron-containing dioxygenases. J Biol Chem. 1980 Sep 25;255(18):8465–8471. [PubMed] [Google Scholar]
  20. Sala-Trepat J. M., Evans W. C. The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Eur J Biochem. 1971 Jun 11;20(3):400–413. doi: 10.1111/j.1432-1033.1971.tb01406.x. [DOI] [PubMed] [Google Scholar]
  21. Sala-Trepat J. M., Evans W. C. The metabolism of 2-hydroxymuconic semialdehyde by Azotobacter species. Biochem Biophys Res Commun. 1971 May 7;43(3):456–462. doi: 10.1016/0006-291x(71)90635-8. [DOI] [PubMed] [Google Scholar]
  22. Sala-Trepat J. M., Murray K., Williams P. A. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Eur J Biochem. 1972 Jul 24;28(3):347–356. doi: 10.1111/j.1432-1033.1972.tb01920.x. [DOI] [PubMed] [Google Scholar]
  23. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  24. Tack B. F., Chapman P. J., Dagley S. Metabolism of gallic acid and syringic acid by Pseudomonas putida. J Biol Chem. 1972 Oct 25;247(20):6438–6443. [PubMed] [Google Scholar]
  25. VOETS J. P. LE M'ETABOLISME DU BENZOATE PAR AZOTOBACTER VINELANDII. Ann Inst Pasteur (Paris) 1963 Aug;105:383–391. [PubMed] [Google Scholar]
  26. Wheelis M. L., Palleroni N. J., Stanier R. Y. The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch Mikrobiol. 1967;59(1):302–314. doi: 10.1007/BF00406344. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES