Abstract
INTRODUCTION—There is a variable relation between angiographic vasospasm and delayed ischaemic neurological deficit (DIND). Magnetic resonance (MR) techniques have the potential to investigate the haemodynamic, metabolic, and structural changes occurring with these complications. These techniques have been applied to study DIND in patients recovering from subarachnoid haemorrhage. METHODS—Fifteen studies were performed on 11 patients, 10 with DIND. Vasospasm was diagnosed angiographically or with transcranial Doppler. The MR protocol consisted of T2 weighted imaging, contrast enhanced dynamic perfusion scanning, TI weighted imaging, and two dimensional localised proton spectroscopy. Relative cerebral blood volume maps were generated from perfusion scans. Metabolite ratios were calculated from proton spectra. RESULTS—All patients had cortical oedema on T2 weighted images, significantly more pronounced in patients of poor clinical grade (p<0.01). Spectra were normal in good grade patients. Lactate was increased and N-acetyl aspartate decreased in the poor grades, significantly worse in grade 4 compared with grade 3 patients (p<0.05). Spectral changes also correlated with the severity of oedema (p<0.05). Relative blood volumes were significantly higher in oedematous regions of poor compared with good grade patients (p<0.05). Lactate was seen in regions of the brain with increased relative blood volume. CONCLUSIONS—Despite the paramagnetic effects of haemorrhage, or of the coils and clips used to treat aneurysms, this study demonstrates that patients recovering from subarachnoid haemorrhage can undergo complex MR studies. Oedema, lactate, and increased relative blood volume correlate well with each other and with DIND and poor clinical grade.
Full Text
The Full Text of this article is available as a PDF (152.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bottomley P. A. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 1987;508:333–348. doi: 10.1111/j.1749-6632.1987.tb32915.x. [DOI] [PubMed] [Google Scholar]
- Brooke N. S., Ouwerkerk R., Adams C. B., Radda G. K., Ledingham J. G., Rajagopalan B. Phosphorus-31 magnetic resonance spectra reveal prolonged intracellular acidosis in the brain following subarachnoid hemorrhage. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1903–1907. doi: 10.1073/pnas.91.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter D. A., Grubb R. L., Jr, Tempel L. W., Powers W. J. Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1991 Sep;11(5):837–844. doi: 10.1038/jcbfm.1991.143. [DOI] [PubMed] [Google Scholar]
- Fisher C. M., Kistler J. P., Davis J. M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980 Jan;6(1):1–9. doi: 10.1227/00006123-198001000-00001. [DOI] [PubMed] [Google Scholar]
- Gadian D. G., Williams S. R., Bates T. E., Kauppinen R. A. NMR spectroscopy: current status and future possibilities. Acta Neurochir Suppl (Wien) 1993;57:1–8. doi: 10.1007/978-3-7091-9266-5_1. [DOI] [PubMed] [Google Scholar]
- Graham G. D., Blamire A. M., Rothman D. L., Brass L. M., Fayad P. B., Petroff O. A., Prichard J. W. Early temporal variation of cerebral metabolites after human stroke. A proton magnetic resonance spectroscopy study. Stroke. 1993 Dec;24(12):1891–1896. doi: 10.1161/01.str.24.12.1891. [DOI] [PubMed] [Google Scholar]
- Grubb R. L., Jr, Raichle M. E., Eichling J. O., Gado M. H. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977 Apr;46(4):446–453. doi: 10.3171/jns.1977.46.4.0446. [DOI] [PubMed] [Google Scholar]
- Handa Y., Kubota T., Tsuchida A., Kaneko M., Caner H., Kobayashi H., Kubota T. Effect of systemic hypotension on cerebral energy metabolism during chronic cerebral vasospasm in primates. J Neurosurg. 1993 Jan;78(1):112–119. doi: 10.3171/jns.1993.78.1.0112. [DOI] [PubMed] [Google Scholar]
- Hino A., Mizukawa N., Tenjin H., Imahori Y., Taketomo S., Yano I., Nakahashi H., Hirakawa K. Postoperative hemodynamic and metabolic changes in patients with subarachnoid hemorrhage. Stroke. 1989 Nov;20(11):1504–1510. doi: 10.1161/01.str.20.11.1504. [DOI] [PubMed] [Google Scholar]
- Hunt W. E., Hess R. M. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968 Jan;28(1):14–20. doi: 10.3171/jns.1968.28.1.0014. [DOI] [PubMed] [Google Scholar]
- Jenkins A., Hadley D. M., Teasdale G. M., Condon B., Macpherson P., Patterson J. Magnetic resonance imaging of acute subarachnoid hemorrhage. J Neurosurg. 1988 May;68(5):731–736. doi: 10.3171/jns.1988.68.5.0731. [DOI] [PubMed] [Google Scholar]
- Kassell N. F., Torner J. C., Haley E. C., Jr, Jane J. A., Adams H. P., Kongable G. L. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: Overall management results. J Neurosurg. 1990 Jul;73(1):18–36. doi: 10.3171/jns.1990.73.1.0018. [DOI] [PubMed] [Google Scholar]
- Kawamura S., Sayama I., Yasui N., Uemura K. Sequential changes in cerebral blood flow and metabolism in patients with subarachnoid haemorrhage. Acta Neurochir (Wien) 1992;114(1-2):12–15. doi: 10.1007/BF01401107. [DOI] [PubMed] [Google Scholar]
- Martin W. R., Baker R. P., Grubb R. L., Raichle M. E. Cerebral blood volume, blood flow, and oxygen metabolism in cerebral ischaemia and subarachnoid haemorrhage: an in-vivo study using positron emission tomography. Acta Neurochir (Wien) 1984;70(1-2):3–9. doi: 10.1007/BF01406037. [DOI] [PubMed] [Google Scholar]
- Matsumura K., Matsuda M., Handa J., Todo G. Magnetic resonance imaging with aneurysmal subarachnoid hemorrhage: comparison with computed tomography scan. Surg Neurol. 1990 Aug;34(2):71–78. doi: 10.1016/0090-3019(90)90100-4. [DOI] [PubMed] [Google Scholar]
- Petroff O. A., Graham G. D., Blamire A. M., al-Rayess M., Rothman D. L., Fayad P. B., Brass L. M., Shulman R. G., Prichard J. W. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology. 1992 Jul;42(7):1349–1354. doi: 10.1212/wnl.42.7.1349. [DOI] [PubMed] [Google Scholar]
- Powers W. J., Grubb R. L., Jr, Baker R. P., Mintun M. A., Raichle M. E. Regional cerebral blood flow and metabolism in reversible ischemia due to vasospasm. Determination by positron emission tomography. J Neurosurg. 1985 Apr;62(4):539–546. doi: 10.3171/jns.1985.62.4.0539. [DOI] [PubMed] [Google Scholar]
- Rosen B. R., Belliveau J. W., Vevea J. M., Brady T. J. Perfusion imaging with NMR contrast agents. Magn Reson Med. 1990 May;14(2):249–265. doi: 10.1002/mrm.1910140211. [DOI] [PubMed] [Google Scholar]
- Rowe J. G., Soper N., Ouwerkerk R., Kerr R. S., Radda G. K., Rajagopalan B. Delayed ischaemia after subarachnoid haemorrhage: a role for small vessel changes. J Neurol Neurosurg Psychiatry. 1995 Oct;59(4):451–452. doi: 10.1136/jnnp.59.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satoh S., Kadoya S. Magnetic resonance imaging of subarachnoid hemorrhage. Neuroradiology. 1988;30(5):361–366. doi: 10.1007/BF00404098. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg. 1992 Aug;77(2):169–184. doi: 10.3171/jns.1992.77.2.0169. [DOI] [PubMed] [Google Scholar]
- Welch K. M., Levine S. R., Martin G., Ordidge R., Vande Linde A. M., Helpern J. A. Magnetic resonance spectroscopy in cerebral ischemia. Neurol Clin. 1992 Feb;10(1):1–29. [PubMed] [Google Scholar]