Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Feb;64(2):204–212. doi: 10.1136/jnnp.64.2.204

1H-MRS in patients with multiple sclerosis undergoing treatment with interferon β-1a: results of a preliminary study

P Sarchielli 1, O Presciutti 1, R Tarducci 1, G Gobbi 1, A Alberti 1, G Pelliccioli 1, A Orlacchio 1, V Gallai 1
PMCID: PMC2169932  PMID: 9489531

Abstract

BACKGROUND—In vivo magnetic resonance spectroscopy (MRS) has been widely used to assess biochemical changes which occur in demyelinating lesions in white matter of patients with multiple sclerosis. It has been suggested that metabolic variations evidenced by MRS are sensitive indicators of the effects of immunomodulatory treatments in this disease.
 Given the recent finding of an increase in the disease activity in patients with multiple sclerosis treated with interferon (IFN) β-1a in the first period of treatment,1H MRS was used to investigate further the modification in brain metabolic indices, particularly in the first phase of IFN βtreatment.
METHODS—A 1H MRS study was performed on five patients with relapsing-remitting multiple sclerosis who were being treated with intramuscular IFN β-1a (6 million units/week) for six months and on five untreated patients. The mean age, duration of the disease, and expanded disability status scores (EDSS) of the two groups were similar. Patients were evaluated at the beginning of the study and in the first, third, and sixth months of treatment.
RESULTS—In the multiple sclerosis white matter lesions, N-acetylaspartate (NAA), choline (Cho), inositol (Ins), and creatine (Cr) peaks did not vary significantly over the entire period of the study in the untreated group.
 In the treated group there was a significant increase in the Cho peak area at the first month compared with the pretreatment period, and this increase continued in the third and sixth months (p<0.001). A slight but not significant rise in the Cho peak was also found in normal appearing white matter in the patient group undergoing treatment with IFN β-1a. The increase in Cho and the lack of significant changes in Cr and NAA peaks induced a significant rise in Cho/Cr and Cho/NAA ratios over the entire period of treatment compared with those at the beginning of the study (p<0.02 and p<0.005 respectively).
 In the treated group there was a slight but significant increase in the Ins peak in the first month (p<0.05) but in the third and sixth months of treatment the Ins values returned to the pretreatment range.
CONCLUSIONS—IFN β-1a has an impact on metabolite concentrations in multiple sclerosis lesions measured by proton MRS. The increase in Cho, Cho/NAA, and Cho/Cr ratios in multiple sclerosis lesions reinforces the view that they are an index of active or recent demyelination and could support the clinical, neuroradiological and immunological evidence showing an increase in disease activity during the first period of treatment with IFN β-1a. On the other hand, the increase in the Cho peak could be indicative of a rise in membrane turnover in multiple sclerosis lesions or a remodelling of plaques which is not necessarily due to a de novo immune mediated demyelination.



Full Text

The Full Text of this article is available as a PDF (196.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold D. L., Matthews P. M., Francis G. S., O'Connor J., Antel J. P. Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol. 1992 Mar;31(3):235–241. doi: 10.1002/ana.410310302. [DOI] [PubMed] [Google Scholar]
  2. Arnold D. L., Matthews P. M., Francis G., Antel J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med. 1990 Apr;14(1):154–159. doi: 10.1002/mrm.1910140115. [DOI] [PubMed] [Google Scholar]
  3. Arnold D. L., Riess G. T., Matthews P. M., Francis G. S., Collins D. L., Wolfson C., Antel J. P. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol. 1994 Jul;36(1):76–82. doi: 10.1002/ana.410360115. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Brenner R. E., Munro P. M., Williams S. C., Bell J. D., Barker G. J., Hawkins C. P., Landon D. N., McDonald W. I. The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med. 1993 Jun;29(6):737–745. doi: 10.1002/mrm.1910290605. [DOI] [PubMed] [Google Scholar]
  6. Bruhn H., Frahm J., Merboldt K. D., Hänicke W., Hanefeld F., Christen H. J., Kruse B., Bauer H. J. Multiple sclerosis in children: cerebral metabolic alterations monitored by localized proton magnetic resonance spectroscopy in vivo. Ann Neurol. 1992 Aug;32(2):140–150. doi: 10.1002/ana.410320205. [DOI] [PubMed] [Google Scholar]
  7. Confort-Gouny S., Vion-Dury J., Nicoli F., Dano P., Donnet A., Grazziani N., Gastaut J. L., Grisoli F., Cozzone P. J. A multiparametric data analysis showing the potential of localized proton MR spectroscopy of the brain in the metabolic characterization of neurological diseases. J Neurol Sci. 1993 Sep;118(2):123–133. doi: 10.1016/0022-510x(93)90101-4. [DOI] [PubMed] [Google Scholar]
  8. Davie C. A., Hawkins C. P., Barker G. J., Brennan A., Tofts P. S., Miller D. H., McDonald W. I. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain. 1994 Feb;117(Pt 1):49–58. doi: 10.1093/brain/117.1.49. [DOI] [PubMed] [Google Scholar]
  9. Davies S. E., Newcombe J., Williams S. R., McDonald W. I., Clark J. B. High resolution proton NMR spectroscopy of multiple sclerosis lesions. J Neurochem. 1995 Feb;64(2):742–748. doi: 10.1046/j.1471-4159.1995.64020742.x. [DOI] [PubMed] [Google Scholar]
  10. Dayal A. S., Jensen M. A., Lledo A., Arnason B. G. Interferon-gamma-secreting cells in multiple sclerosis patients treated with interferon beta-1b. Neurology. 1995 Dec;45(12):2173–2177. doi: 10.1212/wnl.45.12.2173. [DOI] [PubMed] [Google Scholar]
  11. Hanstock C. C., Rothman D. L., Prichard J. W., Jue T., Shulman R. G. Spatially localized 1H NMR spectra of metabolites in the human brain. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1821–1825. doi: 10.1073/pnas.85.6.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Husted C. A., Goodin D. S., Hugg J. W., Maudsley A. A., Tsuruda J. S., de Bie S. H., Fein G., Matson G. B., Weiner M. W. Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol. 1994 Aug;36(2):157–165. doi: 10.1002/ana.410360207. [DOI] [PubMed] [Google Scholar]
  13. Huynh H. K., Oger J., Dorovini-Zis K. Interferon-beta downregulates interferon-gamma-induced class II MHC molecule expression and morphological changes in primary cultures of human brain microvessel endothelial cells. J Neuroimmunol. 1995 Jul;60(1-2):63–73. doi: 10.1016/0165-5728(95)00054-6. [DOI] [PubMed] [Google Scholar]
  14. Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med. 1990 Apr;14(1):26–30. doi: 10.1002/mrm.1910140104. [DOI] [PubMed] [Google Scholar]
  15. Koller K. J., Zaczek R., Coyle J. T. N-acetyl-aspartyl-glutamate: regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method. J Neurochem. 1984 Oct;43(4):1136–1142. doi: 10.1111/j.1471-4159.1984.tb12854.x. [DOI] [PubMed] [Google Scholar]
  16. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  17. Larsson H. B., Christiansen P., Jensen M., Frederiksen J., Heltberg A., Olesen J., Henriksen O. Localized in vivo proton spectroscopy in the brain of patients with multiple sclerosis. Magn Reson Med. 1991 Nov;22(1):23–31. doi: 10.1002/mrm.1910220104. [DOI] [PubMed] [Google Scholar]
  18. Matthews P. M., Francis G., Antel J., Arnold D. L. Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology. 1991 Aug;41(8):1251–1256. doi: 10.1212/wnl.41.8.1251. [DOI] [PubMed] [Google Scholar]
  19. Matthews P. M., Pioro E., Narayanan S., De Stefano N., Fu L., Francis G., Antel J., Wolfson C., Arnold D. L. Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain. 1996 Jun;119(Pt 3):715–722. doi: 10.1093/brain/119.3.715. [DOI] [PubMed] [Google Scholar]
  20. McDonald W. I. Rachelle Fishman-Matthew Moore Lecture. The pathological and clinical dynamics of multiple sclerosis. J Neuropathol Exp Neurol. 1994 Jul;53(4):338–343. doi: 10.1097/00005072-199407000-00003. [DOI] [PubMed] [Google Scholar]
  21. Miller D. H., Austin S. J., Connelly A., Youl B. D., Gadian D. G., McDonald W. I. Proton magnetic resonance spectroscopy of an acute and chronic lesion in multiple sclerosis. Lancet. 1991 Jan 5;337(8732):58–59. doi: 10.1016/0140-6736(91)93383-k. [DOI] [PubMed] [Google Scholar]
  22. Miller D. H. Magnetic resonance imaging and spectroscopy in multiple sclerosis. Curr Opin Neurol. 1995 Jun;8(3):210–215. doi: 10.1097/00019052-199506000-00009. [DOI] [PubMed] [Google Scholar]
  23. Milo R., Panitch H. Additive effects of copolymer-1 and interferon beta-1b on the immune response to myelin basic protein. J Neuroimmunol. 1995 Sep;61(2):185–193. doi: 10.1016/0165-5728(95)00085-g. [DOI] [PubMed] [Google Scholar]
  24. Noronha A., Toscas A., Jensen M. A. Interferon beta augments suppressor cell function in multiple sclerosis. Ann Neurol. 1990 Feb;27(2):207–210. doi: 10.1002/ana.410270219. [DOI] [PubMed] [Google Scholar]
  25. Noronha A., Toscas A., Jensen M. A. Interferon beta decreases T cell activation and interferon gamma production in multiple sclerosis. J Neuroimmunol. 1993 Jul;46(1-2):145–153. doi: 10.1016/0165-5728(93)90244-s. [DOI] [PubMed] [Google Scholar]
  26. Ormerod I. E., Miller D. H., McDonald W. I., du Boulay E. P., Rudge P., Kendall B. E., Moseley I. F., Johnson G., Tofts P. S., Halliday A. M. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain. 1987 Dec;110(Pt 6):1579–1616. doi: 10.1093/brain/110.6.1579. [DOI] [PubMed] [Google Scholar]
  27. Paty D. W., Li D. K. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology. 1993 Apr;43(4):662–667. doi: 10.1212/wnl.43.4.662. [DOI] [PubMed] [Google Scholar]
  28. Porrini A. M., Gambi D., Reder A. T. Interferon effects on interleukin-10 secretion. Mononuclear cell response to interleukin-10 is normal in multiple sclerosis patients. J Neuroimmunol. 1995 Aug;61(1):27–34. doi: 10.1016/0165-5728(95)00070-i. [DOI] [PubMed] [Google Scholar]
  29. Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
  30. Rudge P., Miller D., Crimlisk H., Thorpe J. Does interferon beta cause initial exacerbation of multiple sclerosis? Lancet. 1995 Mar 4;345(8949):580–580. doi: 10.1016/s0140-6736(95)90486-7. [DOI] [PubMed] [Google Scholar]
  31. Soilu-Hänninen M., Salmi A., Salonen R. Interferon-beta downregulates expression of VLA-4 antigen and antagonizes interferon-gamma-induced expression of HLA-DQ on human peripheral blood monocytes. J Neuroimmunol. 1995 Jul;60(1-2):99–106. doi: 10.1016/0165-5728(95)00059-b. [DOI] [PubMed] [Google Scholar]
  32. TALLAN H. H. Studies on the distribution of N-acetyl-L-aspartic acid in brain. J Biol Chem. 1957 Jan;224(1):41–45. [PubMed] [Google Scholar]
  33. Urenjak J., Williams S. R., Gadian D. G., Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993 Mar;13(3):981–989. doi: 10.1523/JNEUROSCI.13-03-00981.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES