Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Feb;64(2):213–216. doi: 10.1136/jnnp.64.2.213

Susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5' end of the aldose reductase gene

A Heesom 1, A Millward 1, A Demaine 1
PMCID: PMC2169937  PMID: 9489533

Abstract

OBJECTIVES—There is evidence that the polyol pathway is involved in the pathogenesis of diabetic neuropathy. Aldose reductase (ALR2) is the first and rate limiting enzyme of this pathway and recent studies have suggested that polymorphisms in and around the gene are associated with the development of diabetic microvascular disease. The aim was to examine the role of ALR2 in the susceptibility to diabetic neuropathy in patients with insulin dependent diabetes mellitus (IDDM).
METHODS—One hundred and fifty nine British white patients with IDDM and 102 normal healthy controls were studied using the polymerase chain reaction to test for a highly polymorphic microsatellite marker 2.1 kilobase (kb) upstream of the initiation site of the ALR2 gene.
RESULTS—Seven alleles were detected (Z-6, Z-4, Z-2, Z, Z+2, Z+4, and Z+6). There was a highly significant decrease in the frequency of the Z+2 allele in those patients with overt neuropathy compared with those with no neuropathy after 20 years duration of diabetes (14.1% v 38.2%, χ2 =17.3, p<0.00001). A similar difference was also found between the neuropathy group and those patients who have had diabetes for< five years with no overt neuropathy (14.1% v 30.2%, χ2=9.0, p<0.0025). The neuropathy group also had a significant decrease in the frequency of the Z/Z+2 genotype compared with those patients who have no neuropathy after 20 years duration of diabetes (14.0% v 44.7%, χ2=13.0, p<0.0005).
CONCLUSION—These results suggest that the aldose reductase gene is intimately involved in the pathogenesis of diabetic neuropathy.



Full Text

The Full Text of this article is available as a PDF (114.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bateman J. B., Kojis T., Heinzmann C., Klisak I., Diep A., Carper D., Nishimura C., Mohandas T., Sparkes R. S. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13. Genomics. 1993 Sep;17(3):560–565. doi: 10.1006/geno.1993.1372. [DOI] [PubMed] [Google Scholar]
  2. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  3. Boel E., Selmer J., Flodgaard H. J., Jensen T. Diabetic late complications: will aldose reductase inhibitors or inhibitors of advanced glycosylation endproduct formation hold promise? J Diabetes Complications. 1995 Apr-Jun;9(2):104–129. doi: 10.1016/1056-8727(94)00025-j. [DOI] [PubMed] [Google Scholar]
  4. Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547–9551. [PubMed] [Google Scholar]
  5. Burg M. B., Kador P. F. Sorbitol, osmoregulation, and the complications of diabetes. J Clin Invest. 1988 Mar;81(3):635–640. doi: 10.1172/JCI113366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cameron N. E., Cotter M. A., Low P. A. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol. 1991 Jul;261(1 Pt 1):E1–E8. doi: 10.1152/ajpendo.1991.261.1.E1. [DOI] [PubMed] [Google Scholar]
  7. Cameron N. E., Cotter M. A. The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications. Diabetes Metab Rev. 1994 Oct;10(3):189–224. doi: 10.1002/dmr.5610100302. [DOI] [PubMed] [Google Scholar]
  8. Chakrabarti S., Sima A. A., Nakajima T., Yagihashi S., Greene D. A. Aldose reductase in the BB rat: isolation, immunological identification and localization in the retina and peripheral nerve. Diabetologia. 1987 Apr;30(4):244–251. doi: 10.1007/BF00270423. [DOI] [PubMed] [Google Scholar]
  9. Chung S., LaMendola J. Cloning and sequence determination of human placental aldose reductase gene. J Biol Chem. 1989 Sep 5;264(25):14775–14777. [PubMed] [Google Scholar]
  10. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  11. Dyck P. J. Hypoxic neuropathy: does hypoxia play a role in diabetic neuropathy? The 1988 Robert Wartenberg lecture. Neurology. 1989 Jan;39(1):111–118. doi: 10.1212/wnl.39.1.111. [DOI] [PubMed] [Google Scholar]
  12. Dyck P. J., Zimmerman B. R., Vilen T. H., Minnerath S. R., Karnes J. L., Yao J. K., Poduslo J. F. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med. 1988 Sep 1;319(9):542–548. doi: 10.1056/NEJM198809013190904. [DOI] [PubMed] [Google Scholar]
  13. Finegold D., Lattimer S. A., Nolle S., Bernstein M., Greene D. A. Polyol pathway activity and myo-inositol metabolism. A suggested relationship in the pathogenesis of diabetic neuropathy. Diabetes. 1983 Nov;32(11):988–992. doi: 10.2337/diab.32.11.988. [DOI] [PubMed] [Google Scholar]
  14. Graham A., Brown L., Hedge P. J., Gammack A. J., Markham A. F. Structure of the human aldose reductase gene. J Biol Chem. 1991 Apr 15;266(11):6872–6877. [PubMed] [Google Scholar]
  15. Graham A., Heath P., Morten J. E., Markham A. F. The human aldose reductase gene maps to chromosome region 7q35. Hum Genet. 1991 Mar;86(5):509–514. doi: 10.1007/BF00194644. [DOI] [PubMed] [Google Scholar]
  16. Greene D. A., Lattimer S. A. Action of sorbinil in diabetic peripheral nerve. Relationship of polyol (sorbitol) pathway inhibition to a myo-inositol-mediated defect in sodium-potassium ATPase activity. Diabetes. 1984 Aug;33(8):712–716. doi: 10.2337/diab.33.8.712. [DOI] [PubMed] [Google Scholar]
  17. Greene D. A., Lattimer S. A. Impaired energy utilization and Na-K-ATPase in diabetic peripheral nerve. Am J Physiol. 1984 Apr;246(4 Pt 1):E311–E318. doi: 10.1152/ajpendo.1984.246.4.E311. [DOI] [PubMed] [Google Scholar]
  18. Greene D. A., Lattimer S. A., Sima A. A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987 Mar 5;316(10):599–606. doi: 10.1056/NEJM198703053161007. [DOI] [PubMed] [Google Scholar]
  19. Greene D. A. Metabolic abnormalities in diabetic peripheral nerve: relation to impaired function. Metabolism. 1983 Jul;32(7 Suppl 1):118–123. doi: 10.1016/s0026-0495(83)80024-9. [DOI] [PubMed] [Google Scholar]
  20. Greene D. A., Sima A. F., Pfeifer M. A., Albers J. W. Diabetic neuropathy. Annu Rev Med. 1990;41:303–317. doi: 10.1146/annurev.me.41.020190.001511. [DOI] [PubMed] [Google Scholar]
  21. Greene D. A., Winegrad A. I. Effects of acute experimental diabetes on composite energy metabolism in peripheral nerve axons and Schwann cells. Diabetes. 1981 Nov;30(11):967–974. doi: 10.2337/diab.30.11.967. [DOI] [PubMed] [Google Scholar]
  22. Hamada Y., Kitoh R., Raskin P. Association of erythrocyte aldose reductase activity with diabetic complications in type 1 diabetes mellitus. Diabet Med. 1993 Jan-Feb;10(1):33–38. doi: 10.1111/j.1464-5491.1993.tb01993.x. [DOI] [PubMed] [Google Scholar]
  23. Hamada Y., Kitoh R., Raskin P. Crucial role of aldose reductase activity and plasma glucose level in sorbitol accumulation in erythrocytes from diabetic patients. Diabetes. 1991 Oct;40(10):1233–1240. doi: 10.2337/diab.40.10.1233. [DOI] [PubMed] [Google Scholar]
  24. Heesom A. E., Hibberd M. L., Millward A., Demaine A. G. Polymorphism in the 5'-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes. Diabetes. 1997 Feb;46(2):287–291. doi: 10.2337/diab.46.2.287. [DOI] [PubMed] [Google Scholar]
  25. Hibberd M. L., Millward B. A., Wong F. S., Demaine A. G. T-cell receptor constant beta chain polymorphisms and susceptibility to type 1 diabetes. Diabet Med. 1992 Dec;9(10):929–933. doi: 10.1111/j.1464-5491.1992.tb01733.x. [DOI] [PubMed] [Google Scholar]
  26. Ko B. C., Lam K. S., Wat N. M., Chung S. S. An (A-C)n dinucleotide repeat polymorphic marker at the 5' end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes. 1995 Jul;44(7):727–732. doi: 10.2337/diabetes.44.7.727. [DOI] [PubMed] [Google Scholar]
  27. Ko B. C., Ruepp B., Bohren K. M., Gabbay K. H., Chung S. S. Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. J Biol Chem. 1997 Jun 27;272(26):16431–16437. doi: 10.1074/jbc.272.26.16431. [DOI] [PubMed] [Google Scholar]
  28. Kwon H. M., Yamauchi A., Uchida S., Robey R. B., Garcia-Perez A., Burg M. B., Handler J. S. Renal Na-myo-inositol cotransporter mRNA expression in Xenopus oocytes: regulation by hypertonicity. Am J Physiol. 1991 Feb;260(2 Pt 2):F258–F263. doi: 10.1152/ajprenal.1991.260.2.F258. [DOI] [PubMed] [Google Scholar]
  29. Moriyama T., Garcia-Perez A., Burg M. B. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem. 1989 Oct 5;264(28):16810–16814. [PubMed] [Google Scholar]
  30. Nicolucci A., Carinci F., Graepel J. G., Hohman T. C., Ferris F., Lachin J. M. The efficacy of tolrestat in the treatment of diabetic peripheral neuropathy. A meta-analysis of individual patient data. Diabetes Care. 1996 Oct;19(10):1091–1096. doi: 10.2337/diacare.19.10.1091. [DOI] [PubMed] [Google Scholar]
  31. Nishimura C., Lou M. F., Kinoshita J. H. Depletion of myo-inositol and amino acids in galactosemic neuropathy. J Neurochem. 1987 Jul;49(1):290–295. doi: 10.1111/j.1471-4159.1987.tb03428.x. [DOI] [PubMed] [Google Scholar]
  32. Nishimura C., Matsuura Y., Kokai Y., Akera T., Carper D., Morjana N., Lyons C., Flynn T. G. Cloning and expression of human aldose reductase. J Biol Chem. 1990 Jun 15;265(17):9788–9792. [PubMed] [Google Scholar]
  33. Patel A., Hibberd M. L., Millward B. A., Demaine A. G. Chromosome 7q35 and susceptibility to diabetic microvascular complications. J Diabetes Complications. 1996 Mar-Apr;10(2):62–67. doi: 10.1016/1056-8727(95)00004-6. [DOI] [PubMed] [Google Scholar]
  34. Patel A., Ratanachaiyavong S., Millward B. A., Demaine A. G. Polymorphisms of the aldose reductase locus (ALR2) and susceptibility to diabetic microvascular complications. Adv Exp Med Biol. 1993;328:325–332. doi: 10.1007/978-1-4615-2904-0_34. [DOI] [PubMed] [Google Scholar]
  35. Sima A. A., Bril V., Nathaniel V., McEwen T. A., Brown M. B., Lattimer S. A., Greene D. A. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med. 1988 Sep 1;319(9):548–555. doi: 10.1056/NEJM198809013190905. [DOI] [PubMed] [Google Scholar]
  36. Tesfaye S., Stevens L. K., Stephenson J. M., Fuller J. H., Plater M., Ionescu-Tirgoviste C., Nuber A., Pozza G., Ward J. D. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia. 1996 Nov;39(11):1377–1384. doi: 10.1007/s001250050586. [DOI] [PubMed] [Google Scholar]
  37. Tomlinson D. R., Sidenius P., Larsen J. R. Slow component-a of axonal transport, nerve myo-inositol, and aldose reductase inhibition in streptozocin-diabetic rats. Diabetes. 1986 Apr;35(4):398–402. doi: 10.2337/diab.35.4.398. [DOI] [PubMed] [Google Scholar]
  38. Williamson J. R., Chang K., Frangos M., Hasan K. S., Ido Y., Kawamura T., Nyengaard J. R., van den Enden M., Kilo C., Tilton R. G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993 Jun;42(6):801–813. doi: 10.2337/diab.42.6.801. [DOI] [PubMed] [Google Scholar]
  39. Yagihashi S., Yamagishi S., Wada R., Sugimoto K., Baba M., Wong H. G., Fujimoto J., Nishimura C., Kokai Y. Galactosemic neuropathy in transgenic mice for human aldose reductase. Diabetes. 1996 Jan;45(1):56–59. doi: 10.2337/diab.45.1.56. [DOI] [PubMed] [Google Scholar]
  40. van Gerven J. M., Tjon-A-Tsien A. M. The efficacy of aldose reductase inhibitors in the management of diabetic complications. Comparison with intensive insulin treatment and pancreatic transplantation. Drugs Aging. 1995 Jan;6(1):9–28. doi: 10.2165/00002512-199506010-00002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES