Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Feb;64(2):197–203. doi: 10.1136/jnnp.64.2.197

MRI lesion volume measurement in multiple sclerosis and its correlation with disability: a comparison of fast fluid attenuated inversion recovery (fFLAIR) and spin echo sequences

M Gawne-Cain 1, J O'Riordan 1, A Coles 1, B Newell 1, A Thompson 1, D Miller 1
PMCID: PMC2169948  PMID: 9489530

Abstract

OBJECTIVES—To assess whether multiple sclerosis lesion volume measurements derived using the fast fluid attenuated inversion recovery (fFLAIR) sequence show better reproducibility or correlation with disability than those derived using the conventional spin echo (CSE) sequence.
METHODS—Part I: twenty five patients with multiple sclerosis were scanned with CSE, fast spin echo (FSE), and fFLAIR. Lesion volume was determined twice for each sequence using a local threshold segmentation technique. Part II: fifty six patients with multiple sclerosis were scanned with CSE and fFLAIR. Total and regional brain lesion volumes were compared with the Kurtzke extended disability scale (EDSS) and functional systems scores (FSS).
RESULTS—Part I: analysis times were significantly longer for CSE than for FSE or fFLAIR. There was no significant difference in the reproducibility of the three sequences. Part II: total lesion volumes were similar but posterior fossa lesion volumes were significantly greater for CSE and subcortical lesion volumes significantly greater for fFLAIR. There was a significant correlation between total volume and EDSS with both sequences (CSE r=0.49; fFLAIR r=0.44). Correlations for the two sequences showed minor differences when anatomical region and FSS were considered separately.
CONCLUSIONS—CSE, FSE, and fFLAIR are equally reproducible; FSE yields lower volumes than CSE; fFLAIR gives similar volumes to CSE but underscores the posterior fossa. Overall clinical correlations are similar for CSE and fFLAIR.



Full Text

The Full Text of this article is available as a PDF (147.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bland J. M., Altman D. G. Measurement error proportional to the mean. BMJ. 1996 Jul 13;313(7049):106–106. doi: 10.1136/bmj.313.7049.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bland J. M., Altman D. G. Measurement error. BMJ. 1996 Jun 29;312(7047):1654–1654. doi: 10.1136/bmj.312.7047.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Constable R. T., Anderson A. W., Zhong J., Gore J. C. Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging. 1992;10(4):497–511. doi: 10.1016/0730-725x(92)90001-g. [DOI] [PubMed] [Google Scholar]
  4. Constable R. T., Gore J. C. The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med. 1992 Nov;28(1):9–24. doi: 10.1002/mrm.1910280103. [DOI] [PubMed] [Google Scholar]
  5. Filippi M., Horsfield M. A., Morrissey S. P., MacManus D. G., Rudge P., McDonald W. I., Miller D. H. Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology. 1994 Apr;44(4):635–641. doi: 10.1212/wnl.44.4.635. [DOI] [PubMed] [Google Scholar]
  6. Filippi M., Paty D. W., Kappos L., Barkhof F., Compston D. A., Thompson A. J., Zhao G. J., Wiles C. M., McDonald W. I., Miller D. H. Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology. 1995 Feb;45(2):255–260. doi: 10.1212/wnl.45.2.255. [DOI] [PubMed] [Google Scholar]
  7. Filippi M., Yousry T., Baratti C., Horsfield M. A., Mammi S., Becker C., Voltz R., Spuler S., Campi A., Reiser M. F. Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain. 1996 Aug;119(Pt 4):1349–1355. doi: 10.1093/brain/119.4.1349. [DOI] [PubMed] [Google Scholar]
  8. Gass A., Barker G. J., Kidd D., Thorpe J. W., MacManus D., Brennan A., Tofts P. S., Thompson A. J., McDonald W. I., Miller D. H. Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol. 1994 Jul;36(1):62–67. doi: 10.1002/ana.410360113. [DOI] [PubMed] [Google Scholar]
  9. Gawne-Cain M. L., Silver N. C., Moseley I. F., Miller D. H. Fast FLAIR of the brain: the range of appearances in normal subjects and its application to quantification of white-matter disease. Neuroradiology. 1997 Apr;39(4):243–249. doi: 10.1007/s002340050402. [DOI] [PubMed] [Google Scholar]
  10. Gawne-Cain M. L., Webb S., Tofts P., Miller D. H. Lesion volume measurement in multiple sclerosis: how important is accurate repositioning? J Magn Reson Imaging. 1996 Sep-Oct;6(5):705–713. doi: 10.1002/jmri.1880060502. [DOI] [PubMed] [Google Scholar]
  11. Grimaud J., Lai M., Thorpe J., Adeleine P., Wang L., Barker G. J., Plummer D. L., Tofts P. S., McDonald W. I., Miller D. H. Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques. Magn Reson Imaging. 1996;14(5):495–505. doi: 10.1016/0730-725x(96)00018-5. [DOI] [PubMed] [Google Scholar]
  12. Hajnal J. V., Bryant D. J., Kasuboski L., Pattany P. M., De Coene B., Lewis P. D., Pennock J. M., Oatridge A., Young I. R., Bydder G. M. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr. 1992 Nov-Dec;16(6):841–844. doi: 10.1097/00004728-199211000-00001. [DOI] [PubMed] [Google Scholar]
  13. Jacobs L. D., Cookfair D. L., Rudick R. A., Herndon R. M., Richert J. R., Salazar A. M., Fischer J. S., Goodkin D. E., Granger C. V., Simon J. H. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) Ann Neurol. 1996 Mar;39(3):285–294. doi: 10.1002/ana.410390304. [DOI] [PubMed] [Google Scholar]
  14. Kandarpa K., Goldhaber S. Z., Meyerovitz M. F. Pulse-spray thrombolysis: the "careful analysis". Radiology. 1994 Nov;193(2):320–324. doi: 10.1148/radiology.193.2.7972735. [DOI] [PubMed] [Google Scholar]
  15. Khoury S. J., Guttmann C. R., Orav E. J., Hohol M. J., Ahn S. S., Hsu L., Kikinis R., Mackin G. A., Jolesz F. A., Weiner H. L. Longitudinal MRI in multiple sclerosis: correlation between disability and lesion burden. Neurology. 1994 Nov;44(11):2120–2124. doi: 10.1212/wnl.44.11.2120. [DOI] [PubMed] [Google Scholar]
  16. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  17. Kurtzke J. F. The Disability Status Scale for multiple sclerosis: apologia pro DSS sua. Neurology. 1989 Feb;39(2 Pt 1):291–302. doi: 10.1212/wnl.39.2.291. [DOI] [PubMed] [Google Scholar]
  18. Miller D. H., Albert P. S., Barkhof F., Francis G., Frank J. A., Hodgkinson S., Lublin F. D., Paty D. W., Reingold S. C., Simon J. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. US National MS Society Task Force. Ann Neurol. 1996 Jan;39(1):6–16. doi: 10.1002/ana.410390104. [DOI] [PubMed] [Google Scholar]
  19. Miller D. H., Barkhof F., Berry I., Kappos L., Scotti G., Thompson A. J. Magnetic resonance imaging in monitoring the treatment of multiple sclerosis: concerted action guidelines. J Neurol Neurosurg Psychiatry. 1991 Aug;54(8):683–688. doi: 10.1136/jnnp.54.8.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paty D. W., Li D. K. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology. 1993 Apr;43(4):662–667. doi: 10.1212/wnl.43.4.662. [DOI] [PubMed] [Google Scholar]
  21. Polman C. H., Dahlke F., Thompson A. J., Ghazi M., Kappos L., Miltenburger C., Pozilli C. Interferon beta-1b in secondary progressive multiple sclerosis--outline of the clinical trial. Mult Scler. 1995;1 (Suppl 1):S51–S54. [PubMed] [Google Scholar]
  22. Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
  23. Rovaris M., Gawne-Cain M. L., Wang L., Miller D. H. A comparison of conventional and fast spin-echo sequences for the measurement of lesion load in multiple sclerosis using a semi-automated contour technique. Neuroradiology. 1997 Mar;39(3):161–165. doi: 10.1007/s002340050384. [DOI] [PubMed] [Google Scholar]
  24. Rydberg J. N., Hammond C. A., Grimm R. C., Erickson B. J., Jack C. R., Jr, Huston J., 3rd, Riederer S. J. Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology. 1994 Oct;193(1):173–180. doi: 10.1148/radiology.193.1.8090888. [DOI] [PubMed] [Google Scholar]
  25. Rydberg J. N., Riederer S. J., Rydberg C. H., Jack C. R. Contrast optimization of fluid-attenuated inversion recovery (FLAIR) imaging. Magn Reson Med. 1995 Dec;34(6):868–877. doi: 10.1002/mrm.1910340612. [DOI] [PubMed] [Google Scholar]
  26. Thompson A. J., Kermode A. G., MacManus D. G., Kendall B. E., Kingsley D. P., Moseley I. F., McDonald W. I. Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. BMJ. 1990 Mar 10;300(6725):631–634. doi: 10.1136/bmj.300.6725.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thorpe J. W., Barker G. J., MacManus D. G., Moseley I. F., Tofts P. S., Miller D. H. Detection of multiple sclerosis by magnetic resonance imaging. Lancet. 1994 Oct 29;344(8931):1235–1235. doi: 10.1016/s0140-6736(94)90553-3. [DOI] [PubMed] [Google Scholar]
  28. Thorpe J. W., Halpin S. F., MacManus D. G., Barker G. J., Kendall B. E., Miller D. H. A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions. Neuroradiology. 1994 Jul;36(5):388–392. doi: 10.1007/BF00612125. [DOI] [PubMed] [Google Scholar]
  29. Truyen L., van Waesberghe J. H., van Walderveen M. A., van Oosten B. W., Polman C. H., Hommes O. R., Adèr H. J., Barkhof F. Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996 Dec;47(6):1469–1476. doi: 10.1212/wnl.47.6.1469. [DOI] [PubMed] [Google Scholar]
  30. Wicks D. A., Barker G. J., Tofts P. S. Correction of intensity nonuniformity in MR images of any orientation. Magn Reson Imaging. 1993;11(2):183–196. doi: 10.1016/0730-725x(93)90023-7. [DOI] [PubMed] [Google Scholar]
  31. van Waesberghe J. H., Castelijns J. A., Weerts J. G., Nijeholt G. J., Hillegers J. P., Polman C. H., Barkhof F. Disappearance of multiple sclerosis lesions with severely prolonged T1 on images obtained by a FLAIR pulse sequence. Magn Reson Imaging. 1996;14(2):209–213. doi: 10.1016/0730-725x(95)02053-v. [DOI] [PubMed] [Google Scholar]
  32. van Walderveen M. A., Barkhof F., Hommes O. R., Polman C. H., Tobi H., Frequin S. T., Valk J. Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology. 1995 Sep;45(9):1684–1690. doi: 10.1212/wnl.45.9.1684. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES