Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Apr;64(4):499–504. doi: 10.1136/jnnp.64.4.499

Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease

B Soong 1, R Liu 1
PMCID: PMC2170028  PMID: 9576542

Abstract

OBJECTIVES—The metabolic changes in the brain of symptomatic subjects affected with Machado-Joseph disease have been previously documented using PET with fluorine-18-fluorodeoxyglucose (FDG). The aim of this study was to evaluate these changes in asymptomatic Machado-Joseph disease gene carriers.
METHODS—Seven asymptomatic MachadoJoseph disease gene carriers, identified using a molecular test, and 10 normal control subjects were recruited for PET studies using FDG. Regional uptake ratios of FDG were calculated from the radioactivity of the cerebellar hemispheres, brainstem, and the temporal, parietal and occipital cortices, divided by the activity in the thalamus.
RESULTS—In comparison with data obtained from normal control subjects, there was significantly decreased FDG utilisation in the cerebellar hemispheres, brainstem, and occipital cortex, and increased FDG metabolism in the parietal and temporal cortices of asymptomatic Machado-Joseph disease gene carriers, suggesting preclinical disease activity. Discriminant analysis of regional FDG uptake correctly classified genetic status (Machado-Joseph disease mutation carriers v mutation negative subjects) in 25 of 25 subjects (100% sensitivity and 100% specificity), and clinical status (asymptomatic mutation carriers v symptomatic patients) in 14 of 15 subjects (100% sensitivity and 85.7% specificity).
CONCLUSION— Subclinical changes of FDG consumption, as measured by non-invasive PET, can act as an objective marker of preclinical disease activity in Machado-Joseph disease.



Full Text

The Full Text of this article is available as a PDF (196.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alavi A., Dann R., Chawluk J., Alavi J., Kushner M., Reivich M. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med. 1986 Jan;16(1):2–34. doi: 10.1016/s0001-2998(86)80002-2. [DOI] [PubMed] [Google Scholar]
  2. Antonini A., Leenders K. L., Spiegel R., Meier D., Vontobel P., Weigell-Weber M., Sanchez-Pernaute R., de Yébenez J. G., Boesiger P., Weindl A. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain. 1996 Dec;119(Pt 6):2085–2095. doi: 10.1093/brain/119.6.2085. [DOI] [PubMed] [Google Scholar]
  3. Duara R., Margolin R. A., Robertson-Tchabo E. A., London E. D., Schwartz M., Renfrew J. W., Koziarz B. J., Sundaram M., Grady C., Moore A. M. Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain. 1983 Sep;106(Pt 3):761–775. doi: 10.1093/brain/106.3.761. [DOI] [PubMed] [Google Scholar]
  4. Gilman S., Junck L., Markel D. S., Koeppe R. A., Kluin K. J. Cerebral glucose hypermetabolism in Friedreich's ataxia detected with positron emission tomography. Ann Neurol. 1990 Dec;28(6):750–757. doi: 10.1002/ana.410280605. [DOI] [PubMed] [Google Scholar]
  5. Gilman S., Koeppe R. A., Junck L., Kluin K. J., Lohman M., St Laurent R. T. Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy. Ann Neurol. 1994 Aug;36(2):166–175. doi: 10.1002/ana.410360208. [DOI] [PubMed] [Google Scholar]
  6. Gilman S., Markel D. S., Koeppe R. A., Junck L., Kluin K. J., Gebarski S. S., Hichwa R. D. Cerebellar and brainstem hypometabolism in olivopontocerebellar atrophy detected with positron emission tomography. Ann Neurol. 1988 Mar;23(3):223–230. doi: 10.1002/ana.410230303. [DOI] [PubMed] [Google Scholar]
  7. Harding A. E. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14. [PubMed] [Google Scholar]
  8. Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S., Kawakami H., Nakamura S., Nishimura M., Akiguchi I. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994 Nov;8(3):221–228. doi: 10.1038/ng1194-221. [DOI] [PubMed] [Google Scholar]
  9. Kuhl D. E., Phelps M. E., Markham C. H., Metter E. J., Riege W. H., Winter J. Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed tomographic scan. Ann Neurol. 1982 Nov;12(5):425–434. doi: 10.1002/ana.410120504. [DOI] [PubMed] [Google Scholar]
  10. Leenders K. L., Palmer A. J., Quinn N., Clark J. C., Firnau G., Garnett E. S., Nahmias C., Jones T., Marsden C. D. Brain dopamine metabolism in patients with Parkinson's disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry. 1986 Aug;49(8):853–860. doi: 10.1136/jnnp.49.8.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mazziotta J. C., Phelps M. E., Pahl J. J., Huang S. C., Baxter L. R., Riege W. H., Hoffman J. M., Kuhl D. E., Lanto A. B., Wapenski J. A. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. N Engl J Med. 1987 Feb 12;316(7):357–362. doi: 10.1056/NEJM198702123160701. [DOI] [PubMed] [Google Scholar]
  12. Otsuka M., Ichiya Y., Kuwabara Y., Miyake Y., Tahara T., Masuda K., Hosokawa S., Goto I., Kato M., Ichimiya A. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy. Ann Nucl Med. 1989 Nov;3(3):111–118. doi: 10.1007/BF03178296. [DOI] [PubMed] [Google Scholar]
  13. Rosenthal G., Gilman S., Koeppe R. A., Kluin K. J., Markel D. S., Junck L., Gebarski S. S. Motor dysfunction in olivopontocerebellar atrophy is related to cerebral metabolic rate studied with positron emission tomography. Ann Neurol. 1988 Sep;24(3):414–419. doi: 10.1002/ana.410240310. [DOI] [PubMed] [Google Scholar]
  14. Soong B. W., Wang J. T. A comparison of the Huntington's disease associated trinucleotide repeat between Chinese and white populations. J Med Genet. 1995 May;32(5):404–405. doi: 10.1136/jmg.32.5.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Soong B., Cheng C., Liu R., Shan D. Machado-Joseph disease: clinical, molecular, and metabolic characterization in Chinese kindreds. Ann Neurol. 1997 Apr;41(4):446–452. doi: 10.1002/ana.410410407. [DOI] [PubMed] [Google Scholar]
  16. Studies in persons at risk for Huntington's disease. N Engl J Med. 1987 Aug 6;317(6):382–384. doi: 10.1056/NEJM198708063170612. [DOI] [PubMed] [Google Scholar]
  17. Suchowersky O., Hayden M. R., Martin W. R., Stoessl A. J., Hildebrand A. M., Pate B. D. Cerebral metabolism of glucose in benign hereditary chorea. Mov Disord. 1986;1(1):33–44. doi: 10.1002/mds.870010105. [DOI] [PubMed] [Google Scholar]
  18. Sudarsky L., Corwin L., Dawson D. M. Machado-Joseph disease in New England: clinical description and distinction from the olivopontocerebellar atrophies. Mov Disord. 1992;7(3):204–208. doi: 10.1002/mds.870070303. [DOI] [PubMed] [Google Scholar]
  19. Takiyama Y., Nishizawa M., Tanaka H., Kawashima S., Sakamoto H., Karube Y., Shimazaki H., Soutome M., Endo K., Ohta S. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet. 1993 Jul;4(3):300–304. doi: 10.1038/ng0793-300. [DOI] [PubMed] [Google Scholar]
  20. Taniwaki T., Sakai T., Kobayashi T., Kuwabara Y., Otsuka M., Ichiya Y., Masuda K., Goto I. Positron emission tomography (PET) in Machado-Joseph disease. J Neurol Sci. 1997 Jan;145(1):63–67. doi: 10.1016/s0022-510x(96)00242-0. [DOI] [PubMed] [Google Scholar]
  21. Weeks R. A., Piccini P., Harding A. E., Brooks D. J. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's disease. Ann Neurol. 1996 Jul;40(1):49–54. doi: 10.1002/ana.410400110. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES