Abstract
OBJECTIVES—Functional MRI (fMRI) holds the promise of non-invasive mapping of human brain function in both health and disease. Yet its sensitivity and reliability for mapping higher cognitive function are still being determined. Using verbal fluency as a task, the objective was to ascertain the consistency of fMRI on a conventional scanner for determining the anatomic substrate of language between subjects and between sexes. Comparison was made with previous PET studies. METHODS—Using a 1.5 Tesla magnet and an echoplanar pulse sequence, whole brain fMRI was obtained from 12 normal right handed subjects (6 males and 6 females) as they performed a verbal fluency task. RESULTS—A broadly consistent pattern of response was seen across subjects. Areas showing activation changes included the left prefrontal cortex and right cerebellum, in agreement with previous PET 15O-H2O studies. In addition, significantly decreased responses were seen in the posterior cingulate and over an extensive area of mesial and dorsolateral parietal and superior temporal cortices. The male cohort showed a slight asymmetry of parietal deactivation, with more involvement on the right, whereas the female cohort showed a small region of activation in the right orbitofrontal cortex. There were individual task related regional changes in all 12 subjects with the area showing the most significant change being the left prefrontal cortex in all cases. CONCLUSIONS—Magnetic resonance scanners of conventional field strength can provide functional brain mapping data with a sensitivity at least that of PET. Activation was seen in left prefrontal and right cerebellar regions, as with PET. However, decremental responses were seen over a much larger area of the posterior cortex than had been anticipated by prior studies. The ability to see a response in each subject individually suggests that fMRI may be useful in the preinterventional mapping of pathological states, and offers a non-invasive alternative to the Wada test for assessment of hemispheric dominance. There were no gross differences in the pattern of activation between male and female subjects.
Full Text
The Full Text of this article is available as a PDF (421.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binder J. R., Swanson S. J., Hammeke T. A., Morris G. L., Mueller W. M., Fischer M., Benbadis S., Frost J. A., Rao S. M., Haughton V. M. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996 Apr;46(4):978–984. doi: 10.1212/wnl.46.4.978. [DOI] [PubMed] [Google Scholar]
- Cuenod C. A., Bookheimer S. Y., Hertz-Pannier L., Zeffiro T. A., Theodore W. H., Le Bihan D. Functional MRI during word generation, using conventional equipment: a potential tool for language localization in the clinical environment. Neurology. 1995 Oct;45(10):1821–1827. doi: 10.1212/wnl.45.10.1821. [DOI] [PubMed] [Google Scholar]
- Decety J., Sjöholm H., Ryding E., Stenberg G., Ingvar D. H. The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Res. 1990 Dec 10;535(2):313–317. doi: 10.1016/0006-8993(90)91615-n. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690–699. doi: 10.1038/jcbfm.1991.122. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. Investigating a network model of word generation with positron emission tomography. Proc Biol Sci. 1991 May 22;244(1310):101–106. doi: 10.1098/rspb.1991.0057. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Holmes A., Poline J. B., Price C. J., Frith C. D. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage. 1996 Dec;4(3 Pt 1):223–235. doi: 10.1006/nimg.1996.0074. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Williams S., Howard R., Frackowiak R. S., Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996 Mar;35(3):346–355. doi: 10.1002/mrm.1910350312. [DOI] [PubMed] [Google Scholar]
- Frith C. D., Friston K. J., Liddle P. F., Frackowiak R. S. A PET study of word finding. Neuropsychologia. 1991;29(12):1137–1148. doi: 10.1016/0028-3932(91)90029-8. [DOI] [PubMed] [Google Scholar]
- Frith C. D., Friston K., Liddle P. F., Frackowiak R. S. Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Sci. 1991 Jun 22;244(1311):241–246. doi: 10.1098/rspb.1991.0077. [DOI] [PubMed] [Google Scholar]
- Hinke R. M., Hu X., Stillman A. E., Kim S. G., Merkle H., Salmi R., Ugurbil K. Functional magnetic resonance imaging of Broca's area during internal speech. Neuroreport. 1993 Jun;4(6):675–678. doi: 10.1097/00001756-199306000-00018. [DOI] [PubMed] [Google Scholar]
- Hutchinson M., Rusinek H., Nenov V. I., Feinberg D. A., Johnson G. Segmentation analysis in functional MRI: activation sensitivity and gray-matter specificity of RARE and FLASH. J Magn Reson Imaging. 1997 Mar-Apr;7(2):361–364. doi: 10.1002/jmri.1880070217. [DOI] [PubMed] [Google Scholar]
- Janowsky J. S., Shimamura A. P., Squire L. R. Source memory impairment in patients with frontal lobe lesions. Neuropsychologia. 1989;27(8):1043–1056. doi: 10.1016/0028-3932(89)90184-x. [DOI] [PubMed] [Google Scholar]
- Kimura D. Sex differences in the brain. Sci Am. 1992 Sep;267(3):118–125. doi: 10.1038/scientificamerican0992-118. [DOI] [PubMed] [Google Scholar]
- McCarthy G., Blamire A. M., Rothman D. L., Gruetter R., Shulman R. G. Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4952–4956. doi: 10.1073/pnas.90.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parks R. W., Loewenstein D. A., Dodrill K. L., Barker W. W., Yoshii F., Chang J. Y., Emran A., Apicella A., Sheramata W. A., Duara R. Cerebral metabolic effects of a verbal fluency test: a PET scan study. J Clin Exp Neuropsychol. 1988 Oct;10(5):565–575. doi: 10.1080/01688638808402795. [DOI] [PubMed] [Google Scholar]
- Rueckert L., Appollonio I., Grafman J., Jezzard P., Johnson R., Jr, Le Bihan D., Turner R. Magnetic resonance imaging functional activation of left frontal cortex during covert word production. J Neuroimaging. 1994 Apr;4(2):67–70. doi: 10.1111/jon19944267. [DOI] [PubMed] [Google Scholar]
- Shaywitz B. A., Shaywitz S. E., Pugh K. R., Constable R. T., Skudlarski P., Fulbright R. K., Bronen R. A., Fletcher J. M., Shankweiler D. P., Katz L. Sex differences in the functional organization of the brain for language. Nature. 1995 Feb 16;373(6515):607–609. doi: 10.1038/373607a0. [DOI] [PubMed] [Google Scholar]
- Wise R., Chollet F., Hadar U., Friston K., Hoffner E., Frackowiak R. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain. 1991 Aug;114(Pt 4):1803–1817. doi: 10.1093/brain/114.4.1803. [DOI] [PubMed] [Google Scholar]
- Worsley K. J., Evans A. C., Marrett S., Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab. 1992 Nov;12(6):900–918. doi: 10.1038/jcbfm.1992.127. [DOI] [PubMed] [Google Scholar]
- Yetkin F. Z., Hammeke T. A., Swanson S. J., Morris G. L., Mueller W. M., McAuliffe T. L., Haughton V. M. A comparison of functional MR activation patterns during silent and audible language tasks. AJNR Am J Neuroradiol. 1995 May;16(5):1087–1092. [PMC free article] [PubMed] [Google Scholar]
- Yurgelun-Todd D. A., Waternaux C. M., Cohen B. M., Gruber S. A., English C. D., Renshaw P. F. Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry. 1996 Feb;153(2):200–205. doi: 10.1176/ajp.153.2.200. [DOI] [PubMed] [Google Scholar]