Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Apr;64(4):486–491. doi: 10.1136/jnnp.64.4.486

Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain

L Hillered 1, J Valtysson 1, P Enblad 1, L Persson 1
PMCID: PMC2170060  PMID: 9576540

Abstract

OBJECTIVE— Brain interstitial glycerol was studied as a potential marker for membrane phospholipid degradation in acute human brain injury.
METHODS—Glycerol was measured in microdialysis samples from the frontal lobe cortex in four patients in the neurointensive care unit, during the acute phase after severe aneurysmal subarachnoid haemorrhage. Microdialysis probes were inserted in conjunction with a ventriculostomy used for routine intracranial pressure monitoring. Clinical events involving hypoxia/ischaemia were diagnosed by neurological signs, neuroimaging (CT and PET), and neurochemical changes of the dialysate—for example, lactate/pyruvate ratios and hypoxanthine concentrations.
RESULTS—Altogether 1554 chemical analyses on 518 microdialysis samples were performed. Clinical events involving secondary hypoxia/ischaemia were generally associated with pronounced increases (up to 15-fold) of the dialysate glycerol concentration. In a patient with a stable condition and no signs of secondary hypoxia/ischaemia the glycerol concentration remained low. Simultaneous determination of glycerol in arterial plasma samples showed that the changes in brain interstitial glycerol could not be attributed to systemic changes and an injured blood brain barrier.
CONCLUSIONS—This study suggests that membrane phospholipid degradation occurs in human cerebral ischaemia. Interstitial glycerol harvested by microdialysis seems to be a promising tool for monitoring of membrane lipolysis in acute brain injury. The marker may be useful for studies on cell membrane injury mechanisms mediated by for example, Ca2+ disturbances, excitatory amino acids, and reactive oxygen species; and in the evaluation of new neuroprotective therapeutic strategies. 



Full Text

The Full Text of this article is available as a PDF (137.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazán N. G., Jr Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anaesthesia. J Neurochem. 1971 Aug;18(8):1379–1385. doi: 10.1111/j.1471-4159.1971.tb00002.x. [DOI] [PubMed] [Google Scholar]
  2. Bazán N. G., Jr Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta. 1970 Oct 6;218(1):1–10. doi: 10.1016/0005-2760(70)90086-x. [DOI] [PubMed] [Google Scholar]
  3. Benveniste H. Brain microdialysis. J Neurochem. 1989 Jun;52(6):1667–1679. doi: 10.1111/j.1471-4159.1989.tb07243.x. [DOI] [PubMed] [Google Scholar]
  4. Bertrand N., Ishii H., Spatz M. Regional and temporal glycerol changes induced by forebrain ischemia in gerbils. Neurosci Lett. 1992 Dec 14;148(1-2):81–84. doi: 10.1016/0304-3940(92)90809-l. [DOI] [PubMed] [Google Scholar]
  5. Chan P. H., Fishman R. A. The role of arachidonic acid in vasogenic brain edema. Fed Proc. 1984 Feb;43(2):210–213. [PubMed] [Google Scholar]
  6. Chan P. H., Yurko M., Fishman R. A. Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J Neurochem. 1982 Feb;38(2):525–531. doi: 10.1111/j.1471-4159.1982.tb08659.x. [DOI] [PubMed] [Google Scholar]
  7. Enblad P., Valtysson J., Andersson J., Lilja A., Valind S., Antoni G., Långström B., Hillered L., Persson L. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996 Jul;16(4):637–644. doi: 10.1097/00004647-199607000-00014. [DOI] [PubMed] [Google Scholar]
  8. Farooqui A. A., Horrocks L. A. Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int Rev Neurobiol. 1994;36:267–323. doi: 10.1016/s0074-7742(08)60306-2. [DOI] [PubMed] [Google Scholar]
  9. Felländer G., Nordenström J., Tjäder I., Bolinder J., Arner P. Lipolysis during abdominal surgery. J Clin Endocrinol Metab. 1994 Jan;78(1):150–155. doi: 10.1210/jcem.78.1.8288698. [DOI] [PubMed] [Google Scholar]
  10. Fisher C. M., Kistler J. P., Davis J. M. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980 Jan;6(1):1–9. doi: 10.1227/00006123-198001000-00001. [DOI] [PubMed] [Google Scholar]
  11. Foster K. J., Alberti K. G., Hinks L., Lloyd B., Postle A., Smythe P., Turnell D. C., Walton R. Blood intermediary metabolite and insulin concentrations after an overnight fast: reference ranges for adults, and interrelations. Clin Chem. 1978 Sep;24(9):1568–1572. [PubMed] [Google Scholar]
  12. Gercken G., Bräuning C. Quantitative determination of hydrolysis products of phospholipids in the ischaemic rat brain. Pflugers Arch. 1973 Nov 28;344(3):207–215. doi: 10.1007/BF00588461. [DOI] [PubMed] [Google Scholar]
  13. Gercken G., Preuss H. The effect of breathing oxygen on the metabolism of the rat brain under normal and ischaemic conditions. J Neurochem. 1969 May;16(5):761–767. doi: 10.1111/j.1471-4159.1969.tb06454.x. [DOI] [PubMed] [Google Scholar]
  14. Hallström A., Carlsson A., Hillered L., Ungerstedt U. Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. J Pharmacol Methods. 1989 Sep;22(2):113–124. doi: 10.1016/0160-5402(89)90040-5. [DOI] [PubMed] [Google Scholar]
  15. Hillered L., Persson L., Pontén U., Ungerstedt U. Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir (Wien) 1990;102(3-4):91–97. doi: 10.1007/BF01405420. [DOI] [PubMed] [Google Scholar]
  16. Hunt W. E., Hess R. M. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg. 1968 Jan;28(1):14–20. doi: 10.3171/jns.1968.28.1.0014. [DOI] [PubMed] [Google Scholar]
  17. Jennett B., Bond M. Assessment of outcome after severe brain damage. Lancet. 1975 Mar 1;1(7905):480–484. doi: 10.1016/s0140-6736(75)92830-5. [DOI] [PubMed] [Google Scholar]
  18. Lynch D. R., Dawson T. M. Secondary mechanisms in neuronal trauma. Curr Opin Neurol. 1994 Dec;7(6):510–516. doi: 10.1097/00019052-199412000-00007. [DOI] [PubMed] [Google Scholar]
  19. Marklund N., Salci K., Lewén A., Hillered L. Glycerol as a marker for post-traumatic membrane phospholipid degradation in rat brain. Neuroreport. 1997 Apr 14;8(6):1457–1461. doi: 10.1097/00001756-199704140-00026. [DOI] [PubMed] [Google Scholar]
  20. Nicoletti F., Meek J. L., Iadarola M. J., Chuang D. M., Roth B. L., Costa E. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem. 1986 Jan;46(1):40–46. doi: 10.1111/j.1471-4159.1986.tb12922.x. [DOI] [PubMed] [Google Scholar]
  21. Paschen W., van den Kerchhoff W., Hossmann K. A. Glycerol as an indicator of lipid degradation in bicuculline-induced seizures and experimental cerebral ischemia. Metab Brain Dis. 1986 Mar;1(1):37–44. doi: 10.1007/BF00998475. [DOI] [PubMed] [Google Scholar]
  22. Persson L., Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg. 1992 Jan;76(1):72–80. doi: 10.3171/jns.1992.76.1.0072. [DOI] [PubMed] [Google Scholar]
  23. Persson L., Valtysson J., Enblad P., Warme P. E., Cesarini K., Lewen A., Hillered L. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996 Apr;84(4):606–616. doi: 10.3171/jns.1996.84.4.0606. [DOI] [PubMed] [Google Scholar]
  24. Ronne-Engström E., Hillered L., Flink R., Spännare B., Ungerstedt U., Carlson H. Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab. 1992 Sep;12(5):873–876. doi: 10.1038/jcbfm.1992.119. [DOI] [PubMed] [Google Scholar]
  25. Rowe C. E. The measurement of triglyceride in brain and the metabolism of brain triglyceride in vitro. J Neurochem. 1969 Feb;16(2):205–214. doi: 10.1111/j.1471-4159.1969.tb05938.x. [DOI] [PubMed] [Google Scholar]
  26. Siesjö B. K., Agardh C. D., Bengtsson F., Smith M. L. Arachidonic acid metabolism in seizures. Ann N Y Acad Sci. 1989;559:323–339. doi: 10.1111/j.1749-6632.1989.tb22619.x. [DOI] [PubMed] [Google Scholar]
  27. Siesjö B. K., Katsura K. Ischemic brain damage: focus on lipids and lipid mediators. Adv Exp Med Biol. 1992;318:41–56. doi: 10.1007/978-1-4615-3426-6_5. [DOI] [PubMed] [Google Scholar]
  28. Wieloch T., Siesjö B. K. Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol (Paris) 1982 May;30(5):269–277. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES