Abstract
A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD+ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.
Full text
PDF![692](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/baf259150900/jbacter00270-0266.png)
![693](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/e9e8e1cbd78a/jbacter00270-0267.png)
![694](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/0897b6e2dada/jbacter00270-0268.png)
![695](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/748f0e22f6c8/jbacter00270-0269.png)
![696](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/e8304be81dcf/jbacter00270-0270.png)
![697](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/bb07816bf4a8/jbacter00270-0271.png)
![698](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/fd80afef1e32/jbacter00270-0272.png)
![699](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/44a787d6968b/jbacter00270-0273.png)
![700](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/a9a4b2e03661/jbacter00270-0274.png)
![701](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/84a400a9fdeb/jbacter00270-0275.png)
![702](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/0f7766fb30c9/jbacter00270-0276.png)
![703](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/0ff1c9705ecc/jbacter00270-0277.png)
![704](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a38/217014/0db7ca341a69/jbacter00270-0278.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achey P., Billen D. Saturation of dark repair synthesis: accumulation of strand breaks. Biophys J. 1969 May;9(5):647–653. doi: 10.1016/S0006-3495(69)86409-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bekker M. L., Kaboev O. K., Akhmedov A. T., Luchkina L. A. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers. J Bacteriol. 1980 Apr;142(1):322–324. doi: 10.1128/jb.142.1.322-324.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bekker M. L., Kaboev O. K., Koval'tsova S. V. A new mutant of the yeast Saccharomyces cerevisiae defective in excision of UV-damaged sites in DNA. Mol Gen Genet. 1980 Feb;177(3):541–544. doi: 10.1007/BF00271495. [DOI] [PubMed] [Google Scholar]
- Carrier W. L., Setlow R. B. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties. J Bacteriol. 1970 Apr;102(1):178–186. doi: 10.1128/jb.102.1.178-186.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleaver J. E., Thomas G. H., Trosko J. E., Lett J. T. Excision repair (dimer excision, strand breakage and repair replication) in primary cultures of eukaryotic (bovine) cells. Exp Cell Res. 1972 Sep;74(1):67–80. doi: 10.1016/0014-4827(72)90482-x. [DOI] [PubMed] [Google Scholar]
- Dingman C. W., Kakunaga T. DNA strand breaking and rejoining in response to ultraviolet light in normal human and xeroderma pigmentosum cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1976 Jul;30(1):55–66. doi: 10.1080/09553007614550801. [DOI] [PubMed] [Google Scholar]
- Fornace A. J., Jr, Kohn K. W., Kann H. E., Jr DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum. Proc Natl Acad Sci U S A. 1976 Jan;73(1):39–43. doi: 10.1073/pnas.73.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanawalt P. C., Cooper P. K., Ganesan A. K., Smith C. A. DNA repair in bacteria and mammalian cells. Annu Rev Biochem. 1979;48:783–836. doi: 10.1146/annurev.bi.48.070179.004031. [DOI] [PubMed] [Google Scholar]
- Haseltine W. A., Gordon L. K., Lindan C. P., Grafstrom R. H., Shaper N. L., Grossman L. Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature. 1980 Jun 26;285(5767):634–641. doi: 10.1038/285634a0. [DOI] [PubMed] [Google Scholar]
- Hatzfeld J. DNA labelling and its assay in yeast. Biochim Biophys Acta. 1973 Feb 23;299(1):34–42. doi: 10.1016/0005-2787(73)90395-x. [DOI] [PubMed] [Google Scholar]
- Jagger J., Fossum T., McCaul S. Ultraviolet irradiation of suspensions of micro-organisms: possible errors involved in the estimation of average fluence per cell. Photochem Photobiol. 1975 May;21(5):379–382. doi: 10.1111/j.1751-1097.1975.tb06690.x. [DOI] [PubMed] [Google Scholar]
- Johnston L. H., Nasmyth K. A. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature. 1978 Aug 31;274(5674):891–893. doi: 10.1038/274891a0. [DOI] [PubMed] [Google Scholar]
- Kato T. Excision repair characteristics of recB - res - and uvrC - strains of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1237–1246. doi: 10.1128/jb.112.3.1237-1246.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOROWITZ H. J. Absorption effects in volume irradiation of microorganisms. Science. 1950 Mar 3;111(2879):229–229. doi: 10.1126/science.111.2879.229-a. [DOI] [PubMed] [Google Scholar]
- Paterson M. C., Lohman P. H., Sluyter M. L. Use of UV endonuclease from Micrococcus luteus to monitor the progress of DNA repair in UV-irradiated human cells. Mutat Res. 1973 Aug;19(2):245–256. doi: 10.1016/0027-5107(73)90083-3. [DOI] [PubMed] [Google Scholar]
- Patrick M. H., Harm H. Substrate specificity of a bacterial UV endonuclease and the overlap with in vitro photoenzymatic repair. Photochem Photobiol. 1973 Nov;18(5):371–386. doi: 10.1111/j.1751-1097.1973.tb06437.x. [DOI] [PubMed] [Google Scholar]
- Prakash L. Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces cerevisiae. Mol Gen Genet. 1977 Apr 29;152(3):125–128. doi: 10.1007/BF00268808. [DOI] [PubMed] [Google Scholar]
- Prakash L., Hinkle D., Prakash S. Decreased UV mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae. Mol Gen Genet. 1979;172(3):249–258. doi: 10.1007/BF00271724. [DOI] [PubMed] [Google Scholar]
- Prakash L., Prakash S. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14 and MMS19. Mol Gen Genet. 1979 Nov;176(3):351–359. doi: 10.1007/BF00333097. [DOI] [PubMed] [Google Scholar]
- Prakash L. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light. J Mol Biol. 1975 Nov 15;98(4):781–795. doi: 10.1016/s0022-2836(75)80010-6. [DOI] [PubMed] [Google Scholar]
- Prakash L. Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6 and rad9 of Saccharomyces cerevisiae. Mutat Res. 1977 Oct;45(1):13–20. doi: 10.1016/0027-5107(77)90038-0. [DOI] [PubMed] [Google Scholar]
- Resnick M. A., Setlow J. K. Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J Bacteriol. 1972 Mar;109(3):979–986. doi: 10.1128/jb.109.3.979-986.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds R. J., Friedberg E. C. Molecular mechanism of pyrimidine dimer excision in Saccharomyces cerevisiae. I. Studies with intact cells and cell-free systems. Basic Life Sci. 1980;15:121–139. doi: 10.1007/978-1-4684-3842-0_8. [DOI] [PubMed] [Google Scholar]
- Reynolds R. J. Removal of pyrimidine dimers from Saccharomyces cerevisiae nuclear DNA under nongrowth conditions as detected by a sensitive, enzymatic assay. Mutat Res. 1978 Apr;50(1):43–56. doi: 10.1016/0027-5107(78)90059-3. [DOI] [PubMed] [Google Scholar]
- Seeberg E., Johansen I. Incisions in ultraviolet irradiated circular bacteriophage lambda DNA molecules in excision proficient and deficient lysogens of E. coli. Mol Gen Genet. 1973;123(2):173–184. doi: 10.1007/BF00267333. [DOI] [PubMed] [Google Scholar]
- Setlow R. B., Regan J. D., German J., Carrier W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1035–1041. doi: 10.1073/pnas.64.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada K., Ogawa H., Tomizawa J. Studies on radiation-sensitive mutants of E. coli. II. Breakage and repair of ultraviolet irradiated intracellular DNA of phage lambda. Mol Gen Genet. 1968 May 3;101(3):245–256. doi: 10.1007/BF00271626. [DOI] [PubMed] [Google Scholar]
- Snow R. Mutants of yeast sensitive to ultraviolet light. J Bacteriol. 1967 Sep;94(3):571–575. doi: 10.1128/jb.94.3.571-575.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unrau P., Wheatcroft R., Cox B. S. The excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast. Mol Gen Genet. 1971;113(4):359–362. doi: 10.1007/BF00272336. [DOI] [PubMed] [Google Scholar]
- Waters R., Moustacchi E. The disappearance of ultraviolet-induced pyrimidine dimers from the nuclear DNA of exponential and stationary phase cells of Saccharomyces cerevisiae following various post-irradiation treatments. Biochim Biophys Acta. 1974 Jul 24;353(4):407–419. doi: 10.1016/0005-2787(74)90048-3. [DOI] [PubMed] [Google Scholar]
- Youngs D. A., Smith K. C. Single-strand breaks in the DNA of the uvrA and uvrB strains of Escherichia coli K-12 after ultraviolet irradiation. Photochem Photobiol. 1976 Dec;24(6):533–541. doi: 10.1111/j.1751-1097.1976.tb06870.x. [DOI] [PubMed] [Google Scholar]
- Zelle B., Lohman P. H. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Mutat Res. 1979 Sep;62(2):363–368. doi: 10.1016/0027-5107(79)90091-5. [DOI] [PubMed] [Google Scholar]