Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Sep;65(3):328–337. doi: 10.1136/jnnp.65.3.328

Motor switching abilities in Parkinson's disease and old age: temporal aspects

M Plotnik 1, T Flash 1, R Inzelberg 1, E Schechtman 1, A Korczyn 1
PMCID: PMC2170251  PMID: 9728944

Abstract

OBJECTIVES— To investigate capabilities of arm trajectory modification in patients with Parkinson's disease and elderly subjects using a double step target displacement paradigm.
METHODS—Nine patients with Parkinson's disease and seven age matched control subjects were instructed to move a stylus towards visual targets presented on a digitising table. Within each session, in some trials the target location was changed before initiation of movement and the subjects were to modify their movements towards the new target (switching trials). In other trials the target location was not changed (control trials). This procedure was repeated for four different target configurations, using interstimulus time intervals of six different durations. The subjects' hand trajectories were recorded and their kinematic characteristics were analysed.
RESULTS—In switching trials, about 40% of the movements were aimed directly toward the final target location in both groups. When the trajectories were initially directed toward the first target and then modified toward the second, the reaction time (RT) to the second stimulus (RT2) was longer than to the first stimulus (RT1). The RT2/RT1 ratio was significantly larger in patients with Parkinson's disease than in healthy elderly subjects.
CONCLUSIONS—Patients with Parkinson's disease and elderly subjects are substantially slower in responding to a required modification of their movement than in responding to the required movement initiation. Patients with Parkinson's disease have impaired capabilities in processing simultaneously the motor responses to two visual stimuli presented in rapid succession. 



Full Text

The Full Text of this article is available as a PDF (165.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benecke R., Rothwell J. C., Dick J. P., Day B. L., Marsden C. D. Disturbance of sequential movements in patients with Parkinson's disease. Brain. 1987 Apr;110(Pt 2):361–379. doi: 10.1093/brain/110.2.361. [DOI] [PubMed] [Google Scholar]
  2. Benecke R., Rothwell J. C., Dick J. P., Day B. L., Marsden C. D. Performance of simultaneous movements in patients with Parkinson's disease. Brain. 1986 Aug;109(Pt 4):739–757. doi: 10.1093/brain/109.4.739. [DOI] [PubMed] [Google Scholar]
  3. Bloxham C. A., Mindel T. A., Frith C. D. Initiation and execution of predictable and unpredictable movements in Parkinson's disease. Brain. 1984 Jun;107(Pt 2):371–384. doi: 10.1093/brain/107.2.371. [DOI] [PubMed] [Google Scholar]
  4. Brotchie P., Iansek R., Horne M. K. Motor function of the monkey globus pallidus. 1. Neuronal discharge and parameters of movement. Brain. 1991 Aug;114(Pt 4):1667–1683. doi: 10.1093/brain/114.4.1667. [DOI] [PubMed] [Google Scholar]
  5. Evarts E. V., Teräväinen H., Calne D. B. Reaction time in Parkinson's disease. Brain. 1981 Mar;104(Pt 1):167–186. doi: 10.1093/brain/104.1.167. [DOI] [PubMed] [Google Scholar]
  6. Flanagan J. R., Ostry D. J., Feldman A. G. Control of Trajectory Modifications in Target-Directed Reaching. J Mot Behav. 1993 Sep;25(3):140–152. doi: 10.1080/00222895.1993.9942045. [DOI] [PubMed] [Google Scholar]
  7. Flash T., Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985 Jul;5(7):1688–1703. doi: 10.1523/JNEUROSCI.05-07-01688.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flash T., Inzelberg R., Schechtman E., Korczyn A. D. Kinematic analysis of upper limb trajectories in Parkinson's disease. Exp Neurol. 1992 Nov;118(2):215–226. doi: 10.1016/0014-4886(92)90038-r. [DOI] [PubMed] [Google Scholar]
  9. Georgopoulos A. P., Kalaska J. F., Massey J. T. Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol. 1981 Oct;46(4):725–743. doi: 10.1152/jn.1981.46.4.725. [DOI] [PubMed] [Google Scholar]
  10. Gielen C. C., van den Heuvel P. J., Denier van der Gon J. J. Modification of muscle activation patterns during fast goal-directed arm movements. J Mot Behav. 1984 Mar;16(1):2–19. doi: 10.1080/00222895.1984.10735308. [DOI] [PubMed] [Google Scholar]
  11. Hallett M., Khoshbin S. A physiological mechanism of bradykinesia. Brain. 1980 Jun;103(2):301–314. doi: 10.1093/brain/103.2.301. [DOI] [PubMed] [Google Scholar]
  12. Harrington D. L., Haaland K. Y. Sequencing in Parkinson's disease. Abnormalities in programming and controlling movement. Brain. 1991 Feb;114(Pt 1A):99–115. [PubMed] [Google Scholar]
  13. Hoehn M. M., Yahr M. D. Parkinsonism: onset, progression and mortality. Neurology. 1967 May;17(5):427–442. doi: 10.1212/wnl.17.5.427. [DOI] [PubMed] [Google Scholar]
  14. Marsden C. D. The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology. 1982 May;32(5):514–539. doi: 10.1212/wnl.32.5.514. [DOI] [PubMed] [Google Scholar]
  15. Mink J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996 Nov;50(4):381–425. doi: 10.1016/s0301-0082(96)00042-1. [DOI] [PubMed] [Google Scholar]
  16. Montgomery E. B., Jr, Gorman D. S., Nuessen J. Motor initiation versus execution in normal and Parkinson's disease subjects. Neurology. 1991 Sep;41(9):1469–1475. doi: 10.1212/wnl.41.9.1469. [DOI] [PubMed] [Google Scholar]
  17. Montgomery E. B., Jr, Nuessen J., Gorman D. S. Reaction time and movement velocity abnormalities in Parkinson's disease under different task conditions. Neurology. 1991 Sep;41(9):1476–1481. doi: 10.1212/wnl.41.9.1476. [DOI] [PubMed] [Google Scholar]
  18. Mortimer J. A. Human motor behavior and aging. Ann N Y Acad Sci. 1988;515:54–66. doi: 10.1111/j.1749-6632.1988.tb32966.x. [DOI] [PubMed] [Google Scholar]
  19. Paulignan Y., MacKenzie C., Marteniuk R., Jeannerod M. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res. 1991;83(3):502–512. doi: 10.1007/BF00229827. [DOI] [PubMed] [Google Scholar]
  20. Robertson C., Flowers K. A. Motor set in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1990 Jul;53(7):583–592. doi: 10.1136/jnnp.53.7.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHWAB R. S., CHAFETZ M. E., WALKER S. Control of two simultaneous voluntary motor acts in normals and in parkinsonism. AMA Arch Neurol Psychiatry. 1954 Nov;72(5):591–598. doi: 10.1001/archneurpsyc.1954.02330050061010. [DOI] [PubMed] [Google Scholar]
  22. Scarpa M., Castiello U. Perturbation of a prehension movement in Parkinson's disease. Mov Disord. 1994 Jul;9(4):415–425. doi: 10.1002/mds.870090407. [DOI] [PubMed] [Google Scholar]
  23. Sheridan M. R., Flowers K. A., Hurrell J. Programming and execution of movement in Parkinson's disease. Brain. 1987 Oct;110(Pt 5):1247–1271. doi: 10.1093/brain/110.5.1247. [DOI] [PubMed] [Google Scholar]
  24. Shimizu N., Yoshida M., Nagatsuka Y. Disturbance of two simultaneous motor acts in patients with parkinsonism and cerebellar ataxia. Adv Neurol. 1987;45:367–370. [PubMed] [Google Scholar]
  25. Soechting J. F., Lacquaniti F. Modification of trajectory of a pointing movement in response to a change in target location. J Neurophysiol. 1983 Feb;49(2):548–564. doi: 10.1152/jn.1983.49.2.548. [DOI] [PubMed] [Google Scholar]
  26. Stelmach G. E., Worringham C. J., Strand E. A. The programming and execution of movement sequences in Parkinson's disease. Int J Neurosci. 1987 Sep;36(1-2):55–65. doi: 10.3109/00207458709002139. [DOI] [PubMed] [Google Scholar]
  27. Warabi T., Yanagisawa N., Shindo R. Changes in strategy of aiming tasks in Parkinson's disease. Brain. 1988 Jun;111(Pt 3):497–505. doi: 10.1093/brain/111.3.497. [DOI] [PubMed] [Google Scholar]
  28. Way T. C., Gottsdanker R. Psychological refractoriness with varying differences between tasks. J Exp Psychol. 1968 Sep;78(1):38–45. doi: 10.1037/h0026154. [DOI] [PubMed] [Google Scholar]
  29. Welford A. T. Reaction time, speed of performance, and age. Ann N Y Acad Sci. 1988;515:1–17. doi: 10.1111/j.1749-6632.1988.tb32958.x. [DOI] [PubMed] [Google Scholar]
  30. van Sonderen J. F., Denier van der Gon J. J., Gielen C. C. Conditions determining early modification of motor programmes in response to changes in target location. Exp Brain Res. 1988;71(2):320–328. doi: 10.1007/BF00247492. [DOI] [PubMed] [Google Scholar]
  31. van Sonderen J. F., Gielen C. C., Denier van der Gon J. J. Motor programmes for goal-directed movements are continuously adjusted according to changes in target location. Exp Brain Res. 1989;78(1):139–146. doi: 10.1007/BF00230693. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES