Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Sep;65(3):317–321. doi: 10.1136/jnnp.65.3.317

Cerebral blood flow and metabolism in patients with silent brain infarction: occult misery perfusion in the cerebral cortex

H Nakane 1, S Ibayashi 1, K Fujii 1, S Sadoshima 1, K Irie 1, T Kitazono 1, M Fujishima 1
PMCID: PMC2170260  PMID: 9728942

Abstract

OBJECTIVES—Silent brain infarction (SBI) is of growing interest as a possible risk factor for symptomatic stroke. Although morphological characteristics of SBI have been well defined, their characteristic patterns of cerebral blood flow (CBF) and metabolism are in dispute. The purpose of this study was to elucidate CBF and metabolism in patients with SBI in relation to symptomatic stroke.
METHODS—The patients underwent PET and were separated into three groups; control group (C group), with no lesions on CT (n=9, mean age 57), SBI group, with no neurological signs or history of stroke, but with ischaemic lesions on CT (n=9, mean age 63), and brain infarction group (BI group), with neurological deficits and compatible CT lesions in the area supplied by perforating arteries (n=19, mean age 56). Regional CBF, oxygen extraction fraction (OEF), cerebral metabolic rate for oxygen (CMRO2), and cerebral blood volume (CBV) were measured by PET.
RESULTS—Mean values for CBF to the cerebral cortex and deep grey matter were lower in the SBI group (31.6 (SD 5.8) and 34.3 (SD 6.9) ml/100 g/min, respectively) and in the BI group (30.8 (SD 5.2), 33.9 (SD 5.9), respectively) than in the C group (36.0 (SD 6.6) and 43.5 (SD 9.5), respectively). Although mean CMRO2 of deep grey matter (2.36 (SD 0.52) ml/100 g/min) was significantly decreased in the SBI group compared with the C group (2.76 (SD 0.480), p<0.01), CMRO2 of the cortical area was as well preserved in the SBI patients (2.36 (SD 0.39)) as in the controls (2.48 (SD 0.32)) with a compensatory increase of mean OEF (0.45 (SD 0.06) and 0.41 (SD 0.05), respectively).
CONCLUSIONS—Patients with SBI showed decreased CBF and CMRO2 in deep grey matter. On the other hand, decreased CBF with milder increased OEF, resulting in preserved CMRO2 in the cerebral cortex indicates the presence of occult misery perfusion, suggesting that patients with SBI have reduced cerebral perfusional reserves.



Full Text

The Full Text of this article is available as a PDF (126.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boon A., Lodder J., Heuts-van Raak L., Kessels F. Silent brain infarcts in 755 consecutive patients with a first-ever supratentorial ischemic stroke. Relationship with index-stroke subtype, vascular risk factors, and mortality. Stroke. 1994 Dec;25(12):2384–2390. doi: 10.1161/01.str.25.12.2384. [DOI] [PubMed] [Google Scholar]
  2. Bornstein N. M., Gur A. Y., Treves T. A., Reider-Groswasser I., Aronovich B. D., Klimovitzky S. S., Varssano D., Korczyn A. D. Do silent brain infarctions predict the development of dementia after first ischemic stroke? Stroke. 1996 May;27(5):904–905. doi: 10.1161/01.str.27.5.904. [DOI] [PubMed] [Google Scholar]
  3. Caplan L., Chedru F., Lhermitte F., Mayman C. Transient global amnesia and migraine. Neurology. 1981 Sep;31(9):1167–1170. doi: 10.1212/wnl.31.9.1167. [DOI] [PubMed] [Google Scholar]
  4. Chamorro A., Saiz A., Vila N., Ascaso C., Blanc R., Alday M., Pujol J. Contribution of arterial blood pressure to the clinical expression of lacunar infarction. Stroke. 1996 Mar;27(3):388–392. doi: 10.1161/01.str.27.3.388. [DOI] [PubMed] [Google Scholar]
  5. Chodosh E. H., Foulkes M. A., Kase C. S., Wolf P. A., Mohr J. P., Hier D. B., Price T. R., Furtado J. G., Jr Silent stroke in the NINCDS Stroke Data Bank. Neurology. 1988 Nov;38(11):1674–1679. doi: 10.1212/wnl.38.11.1674. [DOI] [PubMed] [Google Scholar]
  6. Davis P. H., Clarke W. R., Bendixen B. H., Adams H. P., Jr, Woolson R. F., Culebras A. Silent cerebral infarction in patients enrolled in the TOAST Study. Neurology. 1996 Apr;46(4):942–948. doi: 10.1212/wnl.46.4.942. [DOI] [PubMed] [Google Scholar]
  7. Fisher C. M. Transient global amnesia. Precipitating activities and other observations. Arch Neurol. 1982 Oct;39(10):605–608. doi: 10.1001/archneur.1982.00510220003001. [DOI] [PubMed] [Google Scholar]
  8. Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
  9. Fujii K., Sadoshima S., Ishitsuka T., Kusuda K., Kuwabara Y., Ichiya Y., Fujishima M. Regional cerebral blood flow and metabolism in patients with transient global amnesia: a positron emission tomography study. J Neurol Neurosurg Psychiatry. 1989 May;52(5):622–630. doi: 10.1136/jnnp.52.5.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujii K., Sadoshima S., Okada Y., Yao H., Kuwabara Y., Ichiya Y., Fujishima M. Cerebral blood flow and metabolism in normotensive and hypertensive patients with transient neurologic deficits. Stroke. 1990 Feb;21(2):283–290. doi: 10.1161/01.str.21.2.283. [DOI] [PubMed] [Google Scholar]
  11. Gibbs J. M., Wise R. J., Leenders K. L., Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet. 1984 Feb 11;1(8372):310–314. doi: 10.1016/s0140-6736(84)90361-1. [DOI] [PubMed] [Google Scholar]
  12. Heathfield K. W., Croft P. B., Swash M. The syndrome of transient global amnesia. Brain. 1973 Dec;96(4):729–736. doi: 10.1093/brain/96.4.729. [DOI] [PubMed] [Google Scholar]
  13. Herderscheê D., Hijdra A., Algra A., Koudstaal P. J., Kappelle L. J., van Gijn J. Silent stroke in patients with transient ischemic attack or minor ischemic stroke. The Dutch TIA Trial Study Group. Stroke. 1992 Sep;23(9):1220–1224. doi: 10.1161/01.str.23.9.1220. [DOI] [PubMed] [Google Scholar]
  14. Jørgensen H. S., Nakayama H., Raaschou H. O., Gam J., Olsen T. S. Silent infarction in acute stroke patients. Prevalence, localization, risk factors, and clinical significance: the Copenhagen Stroke Study. Stroke. 1994 Jan;25(1):97–104. doi: 10.1161/01.str.25.1.97. [DOI] [PubMed] [Google Scholar]
  15. Kase C. S., Wolf P. A., Chodosh E. H., Zacker H. B., Kelly-Hayes M., Kannel W. B., D'Agostino R. B., Scampini L. Prevalence of silent stroke in patients presenting with initial stroke: the Framingham Study. Stroke. 1989 Jul;20(7):850–852. doi: 10.1161/01.str.20.7.850. [DOI] [PubMed] [Google Scholar]
  16. Kobayashi S., Okada K., Yamashita K. Incidence of silent lacunar lesion in normal adults and its relation to cerebral blood flow and risk factors. Stroke. 1991 Nov;22(11):1379–1383. doi: 10.1161/01.str.22.11.1379. [DOI] [PubMed] [Google Scholar]
  17. Laloux P., Ossemann M., Jamart J. Stroke subtypes and risk factors associated with silent infarctions in patients with first-ever ischemic stroke or transient ischemic attack. Acta Neurol Belg. 1994;94(1):17–23. [PubMed] [Google Scholar]
  18. Lammertsma A. A., Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab. 1983 Dec;3(4):416–424. doi: 10.1038/jcbfm.1983.67. [DOI] [PubMed] [Google Scholar]
  19. Meguro K., Hatazawa J., Yamaguchi T., Itoh M., Matsuzawa T., Ono S., Miyazawa H., Hishinuma T., Yanai K., Sekita Y. Cerebral circulation and oxygen metabolism associated with subclinical periventricular hyperintensity as shown by magnetic resonance imaging. Ann Neurol. 1990 Sep;28(3):378–383. doi: 10.1002/ana.410280313. [DOI] [PubMed] [Google Scholar]
  20. Nakamura K., Oita J., Yamaguchi T. Nocturnal blood pressure dip in stroke survivors. A pilot study. Stroke. 1995 Aug;26(8):1373–1378. doi: 10.1161/01.str.26.8.1373. [DOI] [PubMed] [Google Scholar]
  21. Petersen P., Madsen E. B., Brun B., Pedersen F., Gyldensted C., Boysen G. Silent cerebral infarction in chronic atrial fibrillation. Stroke. 1987 Nov-Dec;18(6):1098–1100. doi: 10.1161/01.str.18.6.1098. [DOI] [PubMed] [Google Scholar]
  22. Powers W. J., Raichle M. E., Grubb R. L., Jr Positron emission tomography to assess cerebral perfusion. Lancet. 1985 Jan 12;1(8420):102–103. doi: 10.1016/s0140-6736(85)91991-9. [DOI] [PubMed] [Google Scholar]
  23. Ricci S., Celani M. G., La Rosa F., Righetti E., Duca E., Caputo N. Silent brain infarctions in patients with first-ever stroke. A community-based study in Umbria, Italy. Stroke. 1993 May;24(5):647–651. doi: 10.1161/01.str.24.5.647. [DOI] [PubMed] [Google Scholar]
  24. Shinkawa A., Ueda K., Kiyohara Y., Kato I., Sueishi K., Tsuneyoshi M., Fujishima M. Silent cerebral infarction in a community-based autopsy series in Japan. The Hisayama Study. Stroke. 1995 Mar;26(3):380–385. doi: 10.1161/01.str.26.3.380. [DOI] [PubMed] [Google Scholar]
  25. Watanabe N., Imai Y., Nagai K., Tsuji I., Satoh H., Sakuma M., Sakuma H., Kato J., Onodera-Kikuchi N., Yamada M. Nocturnal blood pressure and silent cerebrovascular lesions in elderly Japanese. Stroke. 1996 Aug;27(8):1319–1327. doi: 10.1161/01.str.27.8.1319. [DOI] [PubMed] [Google Scholar]
  26. Zorzon M., Antonutti L., Masè G., Biasutti E., Vitrani B., Cazzato G. Transient global amnesia and transient ischemic attack. Natural history, vascular risk factors, and associated conditions. Stroke. 1995 Sep;26(9):1536–1542. doi: 10.1161/01.str.26.9.1536. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES