Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Oct;65(4):446–453. doi: 10.1136/jnnp.65.4.446

Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia

L Garey 1, W Ong 1, T Patel 1, M Kanani 1, A Davis 1, A Mortimer 1, T Barnes 1, S Hirsch 1
PMCID: PMC2170311  PMID: 9771764

Abstract

OBJECTIVE—A pilot study of the density of dendritic spines on pyramidal neurons in layer III of human temporal and frontal cerebral neocortex in schizophrenia.
METHODS—Postmortem material from a group of eight prospectively diagnosed schizophrenic patients, five archive schizophrenic patients, 11 non-schizophrenic controls, and one patient with schizophrenia-like psychosis, thought to be due to substance misuse, was impregnated with a rapid Golgi method. Spines were counted on the dendrites of pyramidal neurons in temporal and frontal association areas, of which the soma was in layer III (which take part in corticocortical connectivity) and which met strict criteria for impregnation quality. Altogether 25 blocks were studied in the schizophrenic group and 21 in the controls. If more than one block was examined from a single area, the counts for that area were averaged. All measurements were made blind: diagnoses were only disclosed by a third party after measurements were completed. Possible confounding affects of coexisiting Alzheimer's disease were taken into account, as were the effects of age at death and postmortem interval.
RESULTS—There was a significant (p<0.001) reduction in the numerical density of spines in schizophrenia (276/mm in control temporal cortex and 112/mm in schizophrenic patients, and 299 and 101 respectively in the frontal cortex). An analysis of variance, taking out effects of age at death and postmortem interval, which might have explained the low spine density for some of the schizophrenic patients, did not affect the significance of the results. 
CONCLUSION—The results support the concept of there being a defect in the fine structure of dendrites of pyramidal neurons, involving loss of spines, in schizophrenia and may help to explain the loss of cortical volume without loss of neurons in this condition, although the effect of neuroleptic drugs cannot be ruled out.



Full Text

The Full Text of this article is available as a PDF (178.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreasen N. C., Smith M. R., Jacoby C. G., Dennert J. W., Olsen S. A. Ventricular enlargement in schizophrenia: definition and prevalence. Am J Psychiatry. 1982 Mar;139(3):292–296. doi: 10.1176/ajp.139.3.292. [DOI] [PubMed] [Google Scholar]
  2. Benes F. M., Paskevich P. A., Davidson J., Domesick V. B. Synaptic rearrangements in medial prefrontal cortex of haloperidol-treated rats. Brain Res. 1985 Nov 25;348(1):15–20. doi: 10.1016/0006-8993(85)90353-1. [DOI] [PubMed] [Google Scholar]
  3. Braak H., Braak E. Golgi preparations as a tool in neuropathology with particular reference to investigations of the human telencephalic cortex. Prog Neurobiol. 1985;25(2):93–139. doi: 10.1016/0301-0082(85)90001-2. [DOI] [PubMed] [Google Scholar]
  4. Browning M. D., Dudek E. M., Rapier J. L., Leonard S., Freedman R. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry. 1993 Oct 15;34(8):529–535. doi: 10.1016/0006-3223(93)90195-j. [DOI] [PubMed] [Google Scholar]
  5. Catalá I., Ferrer I., Galofré E., Fábregues I. Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative Golgi study on biopsy samples. Hum Neurobiol. 1988;6(4):255–259. [PubMed] [Google Scholar]
  6. Connor J. R., Diamond M. C. A comparison of dendritic spine number and type on pyramidal neurons of the visual cortex of old adult rats from social or isolated environments. J Comp Neurol. 1982 Sep 1;210(1):99–106. doi: 10.1002/cne.902100111. [DOI] [PubMed] [Google Scholar]
  7. DeLisi L. E., Goldin L. R., Hamovit J. R., Maxwell M. E., Kurtz D., Gershon E. S. A family study of the association of increased ventricular size with schizophrenia. Arch Gen Psychiatry. 1986 Feb;43(2):148–153. doi: 10.1001/archpsyc.1986.01800020058007. [DOI] [PubMed] [Google Scholar]
  8. Eastwood S. L., Harrison P. J. Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience. 1995 Nov;69(2):339–343. doi: 10.1016/0306-4522(95)00324-c. [DOI] [PubMed] [Google Scholar]
  9. Ferrer I., Fábregues I., Rairiz J., Galofré E. Decreased numbers of dendritic spines on cortical pyramidal neurons in human chronic alcoholism. Neurosci Lett. 1986 Aug 15;69(1):115–119. doi: 10.1016/0304-3940(86)90425-8. [DOI] [PubMed] [Google Scholar]
  10. Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984 Jan;42(1):1–11. doi: 10.1111/j.1471-4159.1984.tb09689.x. [DOI] [PubMed] [Google Scholar]
  11. Harrison P. J., McLaughlin D., Kerwin R. W. Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet. 1991 Feb 23;337(8739):450–452. doi: 10.1016/0140-6736(91)93392-m. [DOI] [PubMed] [Google Scholar]
  12. Harvey I., Ron M. A., Du Boulay G., Wicks D., Lewis S. W., Murray R. M. Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med. 1993 Aug;23(3):591–604. doi: 10.1017/s003329170002537x. [DOI] [PubMed] [Google Scholar]
  13. He Y., Ong W. Y., Leong S. K., Garey L. J. Distribution of glutamate receptor subunit GluR1 and GABA in human cerebral neocortex: a double immunolabelling and electron microscopic study. Exp Brain Res. 1996 Nov;112(1):147–157. doi: 10.1007/BF00227188. [DOI] [PubMed] [Google Scholar]
  14. Humphries C., Mortimer A., Hirsch S., de Belleroche J. NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. Neuroreport. 1996 Aug 12;7(12):2051–2055. doi: 10.1097/00001756-199608120-00040. [DOI] [PubMed] [Google Scholar]
  15. Johnstone E. C., Crow T. J., Frith C. D., Husband J., Kreel L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet. 1976 Oct 30;2(7992):924–926. doi: 10.1016/s0140-6736(76)90890-4. [DOI] [PubMed] [Google Scholar]
  16. Keshavan M. S., Anderson S., Pettegrew J. W. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res. 1994 May-Jun;28(3):239–265. doi: 10.1016/0022-3956(94)90009-4. [DOI] [PubMed] [Google Scholar]
  17. Kim J. S., Kornhuber H. H., Schmid-Burgk W., Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980 Dec;20(3):379–382. doi: 10.1016/0304-3940(80)90178-0. [DOI] [PubMed] [Google Scholar]
  18. Liddle P. F., Friston K. J., Frith C. D., Hirsch S. R., Jones T., Frackowiak R. S. Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry. 1992 Feb;160:179–186. doi: 10.1192/bjp.160.2.179. [DOI] [PubMed] [Google Scholar]
  19. Lund J. S., Lund R. D., Hendrickson A. E., Bunt A. H., Fuchs A. F. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol. 1975 Dec 1;164(3):287–303. doi: 10.1002/cne.901640303. [DOI] [PubMed] [Google Scholar]
  20. Mehraein P., Yamada M., Tarnowska-Dziduszko E. Quantitative study on dendrites and dendritic spines in Alzheimer's disease and senile dementia. Adv Neurol. 1975;12:453–458. [PubMed] [Google Scholar]
  21. Michel A. E., Garey L. J. The development of dendritic spines in the human visual cortex. Hum Neurobiol. 1984;3(4):223–227. [PubMed] [Google Scholar]
  22. Ong W. Y., Garey L. J. A light and electron microscopic study of GluR4-positive cells in human cerebral cortex. Neurosci Lett. 1996 May 31;210(2):107–110. doi: 10.1016/0304-3940(96)12685-9. [DOI] [PubMed] [Google Scholar]
  23. Ong W. Y., Garey L. J. Ultrastructural features of biopsied temporopolar cortex (area 38) in a case of schizophrenia. Schizophr Res. 1993 Jun;10(1):15–27. doi: 10.1016/0920-9964(93)90072-q. [DOI] [PubMed] [Google Scholar]
  24. Petralia R. S., Wang Y. X., Wenthold R. J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci. 1994 Oct;14(10):6102–6120. doi: 10.1523/JNEUROSCI.14-10-06102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pfefferbaum A., Zipursky R. B., Lim K. O., Zatz L. M., Stahl S. M., Jernigan T. L. Computed tomographic evidence for generalized sulcal and ventricular enlargement in schizophrenia. Arch Gen Psychiatry. 1988 Jul;45(7):633–640. doi: 10.1001/archpsyc.1988.01800310037005. [DOI] [PubMed] [Google Scholar]
  26. Prohovnik I., Dwork A. J., Kaufman M. A., Willson N. Alzheimer-type neuropathology in elderly schizophrenia patients. Schizophr Bull. 1993;19(4):805–816. doi: 10.1093/schbul/19.4.805. [DOI] [PubMed] [Google Scholar]
  27. Reveley A. M., Reveley M. A., Clifford C. A., Murray R. M. Cerebral ventricular size in twins discordant for schizophrenia. Lancet. 1982 Mar 6;1(8271):540–541. doi: 10.1016/s0140-6736(82)92047-5. [DOI] [PubMed] [Google Scholar]
  28. Scheibel M. E., Lindsay R. D., Tomiyasu U., Scheibel A. B. Progressive dendritic changes in aging human cortex. Exp Neurol. 1975 Jun;47(3):392–403. doi: 10.1016/0014-4886(75)90072-2. [DOI] [PubMed] [Google Scholar]
  29. Selemon L. D., Rajkowska G., Goldman-Rakic P. S. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry. 1995 Oct;52(10):805–820. doi: 10.1001/archpsyc.1995.03950220015005. [DOI] [PubMed] [Google Scholar]
  30. Smiley J. F., Williams S. M., Szigeti K., Goldman-Rakic P. S. Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol. 1992 Jul 15;321(3):325–335. doi: 10.1002/cne.903210302. [DOI] [PubMed] [Google Scholar]
  31. Sommer H., Quandt J. Langzeitbehandlung mit Chlorpromazin im Tierexperiment. Fortschr Neurol Psychiatr Grenzgeb. 1970 Sep;38(9):466–491. [PubMed] [Google Scholar]
  32. Suddath R. L., Casanova M. F., Goldberg T. E., Daniel D. G., Kelsoe J. R., Jr, Weinberger D. R. Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. Am J Psychiatry. 1989 Apr;146(4):464–472. doi: 10.1176/ajp.146.4.464. [DOI] [PubMed] [Google Scholar]
  33. Uranova N. A., Orlovskaya D. D., Apel K., Klintsova A. J., Haselhorst U., Schenk H. Morphometric study of synaptic patterns in the rat caudate nucleus and hippocampus under haloperidol treatment. Synapse. 1991 Apr;7(4):253–259. doi: 10.1002/syn.890070402. [DOI] [PubMed] [Google Scholar]
  34. Weinberger D. R., Torrey E. F., Neophytides A. N., Wyatt R. J. Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch Gen Psychiatry. 1979 Jul;36(7):735–739. doi: 10.1001/archpsyc.1979.01780070013001. [DOI] [PubMed] [Google Scholar]
  35. Zipursky R. B., Lim K. O., Sullivan E. V., Brown B. W., Pfefferbaum A. Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry. 1992 Mar;49(3):195–205. doi: 10.1001/archpsyc.1992.01820030027004. [DOI] [PubMed] [Google Scholar]
  36. el Hachimi K. H., Foncin J. F. Perte des épines dendritiques dans la maladie d'Alzheimer. C R Acad Sci III. 1990;311(11):397–402. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES