Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Nov;65(5):748–754. doi: 10.1136/jnnp.65.5.748

The human motor cortex after incomplete spinal cord injury: an investigation using proton magnetic resonance spectroscopy

B Puri 1, H Smith 1, I Cox 1, J Sargentoni 1, G Savic 1, D Maskill 1, H Frankel 1, P Ellaway 1, N Davey 1
PMCID: PMC2170339  PMID: 9810950

Abstract

OBJECTIVES—(1) A biochemical investigation of the motor cortex in patients with incomplete spinal cord injury and normal control subjects using proton magnetic resonance spectroscopy (MRS). (2) To relate any altered biochemistry with the physiological changes in corticospinal function seen after spinal cord injury.
METHODS—a group of six patients with incomplete spinal cord injury who showed good recovery of motor function were selected. The patients were compared with five healthy control subjects. Electromyographic (EMG) responses of thenar muscles to transcranial magnetic stimulation (TMS) of the motor cortex showed that inhibition of cortical output was weaker in the patients than the controls. Proton MRS data were collected from a plane at the level of the centrum semiovale. Two 4.5 cm3 voxels in the motor cortex and a third voxel in the ipsilateral occipital cortex were examined in the patients and control subjects.
RESULTS—The mean level of N-acetylaspartate (NAA), expressed relative to the creatine (Cr) peak (NAA/Cr), was significantly increased in the motor cortex of the patients compared with their ipsilateral occipital cortex or either cortical area in the controls. No differences between patients and controls were seen for any of the other metabolite peaks (choline (Cho), glutamate/glutamine (Glx) or the aspartate component of NAA (AspNAA)) relative to Cr. Choline relative to Cr (Cho/Cr) was higher in the motor cortex of the control subjects than in their ipsilateral occipital cortex. This difference was not present in the patients.
CONCLUSIONS—Raised NAA/Cr in the motor cortex of the patients probably results from increased NAA rather than a decrease in the more stable Cr. The possible relevance of a raised NAA/Cr ratio is discussed, particularly with regard to the changed corticospinal physiology and the functional recovery seen in the patients.



Full Text

The Full Text of this article is available as a PDF (143.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin S. J., Connelly A., Gadian D. G., Benton J. S., Brett E. M. Localized 1H NMR spectroscopy in Canavan's disease: a report of two cases. Magn Reson Med. 1991 Jun;19(2):439–445. doi: 10.1002/mrm.1910190235. [DOI] [PubMed] [Google Scholar]
  2. Brouwer B., Bugaresti J., Ashby P. Changes in corticospinal facilitation of lower limb spinal motor neurons after spinal cord lesions. J Neurol Neurosurg Psychiatry. 1992 Jan;55(1):20–24. doi: 10.1136/jnnp.55.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang C. W., Lien I. N. Estimate of motor conduction in human spinal cord: slowed conduction in spinal cord injury. Muscle Nerve. 1991 Oct;14(10):990–996. doi: 10.1002/mus.880141010. [DOI] [PubMed] [Google Scholar]
  4. Cohen L. G., Bandinelli S., Findley T. W., Hallett M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain. 1991 Feb;114(Pt 1B):615–627. doi: 10.1093/brain/114.1.615. [DOI] [PubMed] [Google Scholar]
  5. Colachis S. C., 3rd, Clinchot D. M. Autonomic hyperreflexia associated with recurrent cardiac arrest: case report. Spinal Cord. 1997 Apr;35(4):256–257. doi: 10.1038/sj.sc.3100359. [DOI] [PubMed] [Google Scholar]
  6. Cox I. J. Development and applications of in vivo clinical magnetic resonance spectroscopy. Prog Biophys Mol Biol. 1996;65(1-2):45–81. doi: 10.1016/s0079-6107(96)00006-5. [DOI] [PubMed] [Google Scholar]
  7. Davey N. J., Puri B. K., Lewis H. S., Lewis S. W., Ellaway P. H. Effects of antipsychotic medication on electromyographic responses to transcranial magnetic stimulation of the motor cortex in schizophrenia. J Neurol Neurosurg Psychiatry. 1997 Oct;63(4):468–473. doi: 10.1136/jnnp.63.4.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davey N. J., Romaiguère P., Maskill D. W., Ellaway P. H. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol. 1994 Jun 1;477(Pt 2):223–235. doi: 10.1113/jphysiol.1994.sp020186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davey N. J., Smith H. C., Wells E., Maskill D. W., Savic G., Ellaway P. H., Frankel H. L. Responses of thenar muscles to transcranial magnetic stimulation of the motor cortex in patients with incomplete spinal cord injury. J Neurol Neurosurg Psychiatry. 1998 Jul;65(1):80–87. doi: 10.1136/jnnp.65.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Stefano N., Matthews P. M., Arnold D. L. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med. 1995 Nov;34(5):721–727. doi: 10.1002/mrm.1910340511. [DOI] [PubMed] [Google Scholar]
  11. Donoghue J. P., Sanes J. N. Organization of adult motor cortex representation patterns following neonatal forelimb nerve injury in rats. J Neurosci. 1988 Sep;8(9):3221–3232. doi: 10.1523/JNEUROSCI.08-09-03221.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Engelbrecht V., Rassek M., Gärtner J., Kahn T., Mödder U. Magnetresonanztomographie und lokalisierte Protonenspektroskopie bei zwei Geschwisterkindern mit Morbus Canavan. Rofo. 1995 Sep;163(3):238–244. doi: 10.1055/s-2007-1015980. [DOI] [PubMed] [Google Scholar]
  13. Fuhr P., Cohen L. G., Dang N., Findley T. W., Haghighi S., Oro J., Hallett M. Physiological analysis of motor reorganization following lower limb amputation. Electroencephalogr Clin Neurophysiol. 1992 Feb;85(1):53–60. doi: 10.1016/0168-5597(92)90102-h. [DOI] [PubMed] [Google Scholar]
  14. Harms L., Meierkord H., Timm G., Pfeiffer L., Ludolph A. C. Decreased N-acetyl-aspartate/choline ratio and increased lactate in the frontal lobe of patients with Huntington's disease: a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiatry. 1997 Jan;62(1):27–30. doi: 10.1136/jnnp.62.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones A. P., Gunawardena W. J., Coutinho C. M., Gatt J. A., Shaw I. C., Mitchell J. D. Preliminary results of proton magnetic resonance spectroscopy in motor neurone disease (amytrophic lateral sclerosis). J Neurol Sci. 1995 May;129 (Suppl):85–89. doi: 10.1016/0022-510x(95)00072-a. [DOI] [PubMed] [Google Scholar]
  16. Levy W. J., Jr, Amassian V. E., Traad M., Cadwell J. Focal magnetic coil stimulation reveals motor cortical system reorganized in humans after traumatic quadriplegia. Brain Res. 1990 Feb 26;510(1):130–134. doi: 10.1016/0006-8993(90)90738-w. [DOI] [PubMed] [Google Scholar]
  17. Machida M., Yamada T., Krain L., Toriyama S., Yarita M. Magnetic stimulation: examination of motor function in patients with cervical spine or cord lesion. J Spinal Disord. 1991 Jun;4(2):123–130. [PubMed] [Google Scholar]
  18. Merzenich M. M., Jenkins W. M. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience. J Hand Ther. 1993 Apr-Jun;6(2):89–104. doi: 10.1016/s0894-1130(12)80290-0. [DOI] [PubMed] [Google Scholar]
  19. Miller B. L. A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed. 1991 Apr;4(2):47–52. doi: 10.1002/nbm.1940040203. [DOI] [PubMed] [Google Scholar]
  20. Petroff O. A., Pleban L. A., Spencer D. D. Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging. 1995;13(8):1197–1211. doi: 10.1016/0730-725x(95)02033-p. [DOI] [PubMed] [Google Scholar]
  21. Pouwels P. J., Frahm J. Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS. NMR Biomed. 1997 Apr;10(2):73–78. doi: 10.1002/(sici)1099-1492(199704)10:2<73::aid-nbm448>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  22. Pouwels P. J., Frahm J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med. 1998 Jan;39(1):53–60. doi: 10.1002/mrm.1910390110. [DOI] [PubMed] [Google Scholar]
  23. Ridding M. C., Inzelberg R., Rothwell J. C. Changes in excitability of motor cortical circuitry in patients with Parkinson's disease. Ann Neurol. 1995 Feb;37(2):181–188. doi: 10.1002/ana.410370208. [DOI] [PubMed] [Google Scholar]
  24. Saeed N., Menon D. K. A knowledge-based approach to minimize baseline roll in chemical shift imaging. Magn Reson Med. 1993 May;29(5):591–598. doi: 10.1002/mrm.1910290503. [DOI] [PubMed] [Google Scholar]
  25. Taylor-Robinson S. D., Sargentoni J., Marcus C. D., Morgan M. Y., Bryant D. J. Regional variations in cerebral proton spectroscopy in patients with chronic hepatic encephalopathy. Metab Brain Dis. 1994 Dec;9(4):347–359. doi: 10.1007/BF02098881. [DOI] [PubMed] [Google Scholar]
  26. Topka H., Cohen L. G., Cole R. A., Hallett M. Reorganization of corticospinal pathways following spinal cord injury. Neurology. 1991 Aug;41(8):1276–1283. doi: 10.1212/wnl.41.8.1276. [DOI] [PubMed] [Google Scholar]
  27. Urenjak J., Williams S. R., Gadian D. G., Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992 Jul;59(1):55–61. doi: 10.1111/j.1471-4159.1992.tb08875.x. [DOI] [PubMed] [Google Scholar]
  28. van der Knaap M. S., van der Grond J., van Rijen P. C., Faber J. A., Valk J., Willemse K. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology. 1990 Aug;176(2):509–515. doi: 10.1148/radiology.176.2.2164237. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES