Abstract
Two different Mg2+-dependent adenosine 5'-triphosphate-hydrolyzing activities were detected in membranes of Vibrio costicola, a novel 5'-nucleotidase and an N,N'-dicyclohexylcarbodiimide-sensitive adenosine triphosphatase. The former and the latter had different requirements for Mg2+ and were selectively assayed in the membranes by using, respectively, 20 and 2 mM Mg2+. The two enzymes were extracted with a combination of Triton X-100 and octylglucoside, separated on a diethylaminoethyl cellulose column, and purified on glycerol gradients. The purified 5'-nucleotidase consisted of one major polypeptide of 70,000 daltons when analyzed on polyacrylamide gels in the presence of sodium dodecyl sulfate. The purified 5'-nucleotidase was similar in substrate specificities, divalent cation specificities, and pH profiles to the membrane-bound N,N'-dicyclohexylcarbodiimide-insensitive nucleotide-phosphohydrolyzing activity. The enzyme hydrolyzed nucleoside 5'-tri, 5'-di, and 5'-monophosphates at comparable rates. Inorganic pyrophosphate, p-nitrophenyl phosphate, glucose 6-phosphate, beta-glycerophosphate, adenosine 5'-diphosphate glucose, adenosine 3'-monophosphate, and cyclic adenosine 3',5'-monophosphate were not hydrolyzed, either im membranes or by the purified 5'-nucleotides. Actions of NaCl and KCl on the activity of the 5'-nucleotidase were studied. The enzyme was activated by both NaCl and KCl; the activation profiles however, were different for the membrane-bound and purified 5'-nucleotidase. The purified enzyme, unlike the membrane-bound enzyme, was markedly stimulated by high concentrations of NaCl (up to 3 M).
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlers J., Günther T., Peter H. W. Phospholipid composition of plasma membranes and kinetic properties of membrane-bound nucleotidase from marine bacteria. Int J Biochem. 1978;9(8):573–578. doi: 10.1016/0020-711x(78)90117-9. [DOI] [PubMed] [Google Scholar]
- Baron C., Thompson T. E. Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoyl phosphatidylcholine. Biochim Biophys Acta. 1975 Mar 25;382(3):276–285. doi: 10.1016/0005-2736(75)90270-9. [DOI] [PubMed] [Google Scholar]
- Bengis-Garber C., Gromet-Elhanan Z. Purification of the energy-transducing adenosine triphosphatase complex from Rhodospirillum rubrum. Biochemistry. 1979 Aug 7;18(16):3577–3581. doi: 10.1021/bi00583a022. [DOI] [PubMed] [Google Scholar]
- CHRISTIAN J. H., WALTHO J. A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962 Dec 17;65:506–508. doi: 10.1016/0006-3002(62)90453-5. [DOI] [PubMed] [Google Scholar]
- DRAPEAU G. R., MACLEOD R. A. NUTRITION AND METABOLISM OF MARINE BACTERIA. XII. ION ACTIVATION OF ADENOSINE TRIPHOSPHATASE IN MEMBRANES OF MARINE BACTERIAL CELLS. J Bacteriol. 1963 Jun;85:1413–1419. doi: 10.1128/jb.85.6.1413-1419.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERMAN E. C., Jr, WRIGHT B. E. At 5'-nucleotidase activated by ferrous iron. J Biol Chem. 1959 Jan;234(1):122–125. [PubMed] [Google Scholar]
- Hayashi M., Unemoto T., Kozuka Y., Hayashi M. Anion-activated 5'-nucleotidase in cell envelopes of a slightly halophilic Vibrio alginolyticus. Biochim Biophys Acta. 1970 Nov 11;220(2):244–255. doi: 10.1016/0005-2744(70)90010-0. [DOI] [PubMed] [Google Scholar]
- KOHN J., REIS J. L. BACTERIAL NUCLEOTIDASES. J Bacteriol. 1963 Oct;86:713–716. doi: 10.1128/jb.86.4.713-716.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974 Sep;38(3):272–290. doi: 10.1128/br.38.3.272-290.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neu H. C. The 5'-nucleotidase of Escherichia coli. I. Purification and properties. J Biol Chem. 1967 Sep 10;242(17):3896–3904. [PubMed] [Google Scholar]
- Neu H. C. The 5'-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5'-nucleotidase inhibitor. J Biol Chem. 1967 Sep 10;242(17):3905–3911. [PubMed] [Google Scholar]
- Shindler D. B., Wydro R. M., Kushner D. J. Cell-bound cations of the moderately halophilic bacterium Vibrio costicola. J Bacteriol. 1977 May;130(2):698–703. doi: 10.1128/jb.130.2.698-703.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- Thompson J., Green M. L., Happold F. C. Cation-activated nucleotidase in cell envelopes of a marine bacterium. J Bacteriol. 1969 Sep;99(3):834–841. doi: 10.1128/jb.99.3.834-841.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WANG T. P. Specific 5'-nucleotidase from a soil bacterium. J Bacteriol. 1954 Jul;68(1):128–128. doi: 10.1128/jb.68.1.128-128.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Yagil E., Beacham I. R. Uptake of adenosine 5'-monophosphate by Escherichia coli. J Bacteriol. 1975 Feb;121(2):401–405. doi: 10.1128/jb.121.2.401-405.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yayashi M., Uchida R. A cation activated adenosinetriphosphatase in cell membranes of halophilic Vibrio parahaemolyticus. Biochim Biophys Acta. 1965 Oct 25;110(1):207–209. doi: 10.1016/s0926-6593(65)80113-8. [DOI] [PubMed] [Google Scholar]
- de Médicis E., Rossignol B. Pyruvate kinase from the moderate halophile, Vibrio costicola. Can J Biochem. 1977 Aug;55(8):825–833. doi: 10.1139/o77-122. [DOI] [PubMed] [Google Scholar]